
DOCUMENT RESUME

ED 066 878 EM 010 158

AUTHOR Leaf, William A.
TITLE SLIP: A Symmetric List Processing Language in

PL-I.
INSTITUTION Educational Testing Service, Princeton, N.J.
REPORT NO Rile-71-52
PUB DATE Sep 71
NOTE 74p.

EDRS PRICE Mi-$0.65 HC-$3.29
DESCRIPTORS Computer Science; *Data Processing; *Electronic Data

Processing; *Programing Languages
IDENTIFIERS PL 1; SLIP; *Symmetric List Processing

ABSTRACT
SLIP (Symmetric List Processing) is a list processing

system designed to be added to a higher order language (PL-1 in this
version) so that the user has available to him list processing
powers. The primary value of such a system is its data handling
power. Through SLIP, one can set up lists of data, scan those lists,
alter them, and read or write them via external devices with minimal
concern for space allotment, data types, or data structure
organization. It is possible, for example, to write general programs
which create and ranipulate list structures whose shape, size, and
contents are completely defined only during execution, by the shape,
size, and contents of the data. SLIP exists as a set of library
subroutines which do the actual manipulations. Thus the user simply
writes a normal PL-1 program in which some statements refer to SLIP
functions. These subroutines are explained here. (Author/JK)



SLIP: A SYMMETRIC LIST PROCESSING LANGUAGE IA; PL-I

William A. Leaf

Carnegie-Mellon University

U.S. DEPARTMENT OF HEALTH,
EDUCATION Ai WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR OPGANIZATION ORIG-INATING IT P01, OF VIEW OR OPIN-
IONS STATED- DZ; NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

Educational Testing Service

Princeton, New Jersey

September 1971

RB-71-52



SLIP: A Symmetric List Processing Language in PL-I

William A. Leaf

Carnegie-Mellon University

Introduction

This description of SLIP is written for the reader who has at least

a basic knowledge of PL-I termirology, conventions, and programming.

Since this SLIP (and PL-I) are written for IBM-360 computers, the

machine- oriented details in the following pages are 360 details. As much

detail as possible has been proviled ,so that the interested reader can

understand the physical representation of SLIP cells and lists. The user

interested only in the features of the language can skip such hardware

information without loss of understanding.

The version of SLIP descrihed here is written for the OS version of

PL-I, specifically version 4, release l( of the PL-I.(F) compiler. Only

minor changes in the routines are necessary to adapt them to other releases

or versions of the (F) compiler.



SLIP: A Symmetric List Processing Language in PL-I

William A. Leaf*

Carnegie-Mellon University

General Features of SLIP

SLIP is a list processing system originally developed by Joseph

Weizenbaum (1965). It is designed to be added to a higher order language,

PL-I in this version, so that the user has available to him, in addition to

the host algebraic language, list processing powers similar to those of

languages like IPL-V, LISP, or FLPL.

The primary value of such a system is its data handling power. Through

SLIP, one can set up lists of data, scan those lists, alter them, and read

or write them ia external devices Idth minimal concern for space allotment,

data types, or data structure organization. It is possible, for example, to

write general programs which create and manipulate list structures whose

shape, size, and contents are completely defined only during execution, by

the shape, size, and contents of the data.

SLIP exists as a set of library subroutines which do the actual manipu-

lations. Thus the user simply writes a normal PL-I program in which some

statements refer to SLIP functions. The user has access to all the normal

facilities of PL-I and, in addition, has the power to create and manipulate

data lists.

Weizenbaum orginally wrote SLIP to be imbedded in FORTRAN; since then,

it has been adapted to be used with other algebraic languages (e.g., MAD;

see Johnson, Rosin, & Leaf, 1967) and has been aaapted at least once to

PL-I (Johnson, 1968).

*This work was done while the author was a Visiting Research Psychologist
at Educational Testing Service.

3



-2-

The present version of SLIP differs from the earJ.ier versions in many

respects. The major reason for this is the large difference between

FORTRAN and PL-I. The latter language has a much wider variety of data

types than the former, and it seem3d important to mirror this flexibility

in SLIP.

Thus the form of data storage has been changed slightly to fit with

PL-I conventions. Many of .he functions in SLIP now do slightly different

things, in different ways, than they did in the earlier versions. And the

names of the functions have sometimes been changed, primarily to improve

the mnemonics but also to take advantage of the fact that PL-I allows

7-character names.

SLIP's overall powers and purposes have not been changed, however.

The basic features of the language can be briefly summarized under four

headings: list creation and manipulation, list scanning, description lists,

and list input-output.

List creation and manipulation. Lists may contain any number of data

cells and sublists (which have all the flexibility of main lists). Lists

may be created (via the function LIST), copied (COPYIST), or erased

(ERASLST). New data may be added to a list (NEWTOP, NEWBOT) or they may

replace old data (SUBTOP, SUBBOT, REPLACE). Old data may be retrieved

(TOP, BOT, DATUM) or removed from lists (POPTOP, POPBOT, REMOVE). The

entire contents of a list may be moved to another list (NOVEL, MOVER) or

erased (EMTYLST).

List scanning. The functions described above are best for manipulating

data at the top or bottom of a list. By means of SLIP's reader facility,



-5-

however, one can scan through a list or its sablists for data, then remove,

replace, or retrieve the data as desired. Readers are pointers which may

be moved up or down a list (via the advance functions, ADV3TR, Ar/STL,

ADVLNR, and ADVLNL) to find any kind of datum or a particular kind of

datum.

A particularly useful function, SEARCH, will scan a last's data for

a particular datum.

Description lists. It is often useful to attach to a list a set of

descriptors which identify the nature of the list (its data types or its

importance to the program). Each list may have a description list which

contains such information in Attribute Dimension-Value pairs. Specialized

functions exist which conveniently manipulate such descriptive information.

For example, NEWVAL stores the value for a particular attribute, ITSVAL

retrieves the current value, and NOVAL removes the attribute and its value

from the description list.

List input-output. Often the most economical way to create complex

lists is to prepare them as input for the running program. Two functions,

READLST and PRNTLST, exist which can read and write lists of any complexity.

The output from PRNTLST is readable by READLST, so that one can save lists

from day to day or use one program to create a complex list for another.

Organization of SLIP Lists

Lists are made up of a mai. cell, or header, and any number of data

cells (see below for a description of the data types which may be stored in

cells). The cells are linked together linearly and symmetrically. That is,

the header is linked to the first data cell, the first is linked to the second

cell, . . . , the next-to-last cell is linked to the last cell, and the



last cell is linked to the header. In addition, the header is linked back

to the last cell and all other cells are linked back to the preceding cell

on the list. Thus the keyword symmetric: from any point on the list, it

is possible to use the chain of links to go either forward or backward to

any other point on the list. (The terminology for locating cells on a

list relative to other cells on the list can be confusing. In normal linear

11:.ts, data cells are either above or below each other, and the header cell

is the top of the list. These terms are still used in SLIP, but since lists

are symmetric, a conventional meaning for "above" and "below" must be agreed

upon. Each cell has two links; conventionally, the one called "LNKR" (link

right) points forward to the cell below the current cell. The link left

("LNKL") points upward or backward to the preceding cell. Exceptions occur

around the header, but it is traditionally regarded as the top of the list,

and the cell to the "left" of the header is regarded as the bottom of the

list.)

Data cells may contain data such as numbers or bit or character strings.

They may also contain pointers to other lists. Thus any list may have any

number of sublists, which in turn may have sublists of their own, etc. A

list may be its own sublist. Thus it is possible to create extremely c-m-

plex list structures.

A list may also have a description list. In IPL-V, description lists

were usually seen as containing descriptive information about the nature

of the main list, information completely separate from its contents. In

SLIP, one may use the description lists for the same purposes; there are

specialized subroutines designed to conveniently create and scan such lists.

6



-5-

Or one can use a description list fcr any purpose desired; practically,

description lists have all the flexibility of organization and use as

other lists, including the ability to have description lists.

SLIP Cells

Figure 1 gives the schematic form for any SLIP cell. Because PL-I

allows data of different physical lengths, the actual length of a cell is

determined by its datum. Each ce_". is made up of a twc-word "links" portion

followed by the datum.

SLIP field ID LNKL MARK LNKR datum

Byte 0 1 2 3 Ii 5 6 7 18 ... 4a-1

Figure 1. Otoracre representation of a typical SLIP cell.

The first byte of the cell (which always Jegins on a fullword boundary)

contains the ID which identifies the type of datum contained in the cell;

currently, ID values of 1 to 13 are meaningful (see below). The rest of the

first word (bytes 1-3) is the lirk left which points to the next hither cell

on the same 17'st. The second word begins with a 1-byte MARK portion. It is

unused by SLIP, but may be used by the programer to identify particula-

cells--for example, during a searching or scanning operation. The MARK is

initially set to 0; it may be given any value from 0 to 255. Bytes 5-7 of

the second word (LNKR) contain the link to the next lower cell on the list.

Both LNKR and LNKL are machine addresses corresponding to PL-I pointer

variables.



ID

1
2

3
4

5
6

7
8

9
10

11

12

-6-

DATUM Type
a

fixed binary (15,0) (defaull
fixed binary (31,0) (maximum

float binary (21)
float binary (53

(defaull
(maximum

fixed decimal (5,0) (default)

fixed decimal (15,0) (maximum)

float decimal (6) (defaull
float decimal (16) (maximum
character string (< 256)
bit string (< 20487

name of sublist (pointer variable)

header of list (8-byte datum)containing a
description list name (pointer variable)
and a reference counter "(binary integer)

13 reader cell

Figure 2. Allowable SLIP data types and their corresponding
SLIP IDs. While only codes 1-11 are strictly data, codes 12 and 33
are included in this table for completeness.

a
The parenthesized numbers represent the length of the datum

and, if present, the scale factor.

Header cells (ID = 12). The datum portion of a header cell is made up

of two words. The first word contains a pointer to the list's description

list, if any. The second word a binary integer whose valge is the list's

reference counter. The reference counter tallies the number of times the

list has been mentioned on other lists as a sublist or a description list.

The tally is extremely important in telling SLIP if it is all right to erase

a list or if the list cannot be erased because it is referenced by other

valid lists. (See Space Managing below for more details.)

Reader cells (ID = 3,). Reader cells are special apklication cells used

by the reader mechanisms for scanning list structures. They cannot be used



1,1iemselies as list items. (See The Reader Facility b( Low fc r a c,,mplel.-

description.)

Data cells (ID = 1 to 11). PL-I has a very wide range of data types--

binary and decimal integer and floating point numbers, complex numbers,

puinter and offset variables, bit and character strings, and pound sterling

values, for example- -but a certain Inflexibility in mixing data types. The

11 data types actually allowed in SLIP cells represent a compromise intended

to give the user the freedom to use as many meaningfully different data

types as possible. Some data types are omitted completely, such as offset

variables and complex variables; they are the ores which seem to have the

least value to SLIP programmers.

Binary fixed point numbers, in version 4 of PL-I, are all stored in

full computer words regardless of precision. SLIP allows the default

precision (15,0; ID = 1) and the maximum precision (31,0; ID 2). (Pre-

cision figures in PL-I definitions are in terms of the base used. Thus a

fixed binary number of default precision allows 15 binary places; this is

approximately equivalent to the default precision of fixed decimal numbers,

which is 5 decimal digits.)

Fixed decimal numbers in PL-I are stored internally as decimal digits

plus a sign. Such numbers may vary in length from 1 byte (precision , 1)

to 2 words (precision = 15). SLIP allows the default precision (5,0;

ID = 5) and the maximum (15,0; ID = 6).

Floating point numbers, either binary or decimal, are all stored in

the 364, as floating hexadecimal numbers of either 1 or 2 words in length.

Because PL-I distinguishes between float binary and float decimal, both



-8-

are allowed separately in SLIP. The default precisions of float binary

(21; ID = 3) and float (ecimal (6; ID = 7) are equivalent; each is 1 word

long. Also allowed are the maximum precisions for float binary (53; ID

4) and float decimal (16; ID = 8); each is 2 words long.

Strings in PL-I consist of two parts: a two-word Dope Vector and the

string itself. The Dope Vector cuntains the address of the string in the

first word and the actual and maximum possible lengths of the string in

the second word (the two lengths may be different in the case of variable

length strings). Character strings are stored with 1 character per byte;

bit strings are stored with 8 bits per byte. In a SLIP data cell, a

string is stored with the Dope Vector in the first 2 datum words and the

string itself in the following words. All strings are stored as if they

are of variable length; the maximum length for any string is the smallest

number of full words needed to store the actual string.

In data cells, strings may be up to 256 characters in length (ID = 9)

or 2048 bits in length (ID = 10).

Sublist names (ID = 11) are actually pointer variables; these are 1

word long. For a pointer variable to be the name of r. sublist, its value

must be the address of the sublist's header.

SLIP cells are all made up of a round number of computer words, even

when the datum does not require the entire space (as for ID = 5 and for

many cases with ID = 9 or 10). The minimum number of words in a cell is

3 (ID = 1, 2, 3, 5, 7, and 11); the maximum possible length is 68 words

(ID = 9 and 10) although the exact length of string cells is determined

by tIle length of the strings.



-9-

The List of AvailC)le Space (AVSL)

SLIP cello are created from a list of available space which is oet up

by the programmer outside his own program area by calling the function

INITAS.

Originally, the list contains 4096 bytes of core. It can be increased

by 1024-byte increments, whenever 1;he current space is completely used, by

automatic calls for more space, up to the limits of the machine storage

allocated to the user. After first calling INITAS, the user need concern

himself no more with available space. To him, it appears that all the rest

of his job partition space is available at once. The job is terminated if

a request is made for more space when none is available or can be found.

At that time, one of two messages is printed out:

* *** INITAS COULD NOT ALLOCATE ANY SPACE FOR SLIP LIST STRUCTURE STORAGE.
"** GO.REGION WAS TOO SMALL. PROGRAM TERMINATED.

if the program took up so much of the user's space that INITAS could not

even allocate the initial partition, or

**** NO MORE SPACE COULD PE OBTAINED AFTER xxxxx BYTES HAD BEEN ALLOCATED

TO SLIP.
** yyyyy BYTES WERE STILL FREE BUT IN SEGMENTS '200 SMALL TO BE USED.

"44 PROGRAM TERMINATED.

if INITAS had been able to successfully rind space at least once. xxxxx and

yyyyy are numiers; yyyyy can be greater than zero and allocation can still

fail if the bytes are in separate pieces each too small t9 hold the new

cell. (If yyyyy = 0, that comment line does not appear.)

AVSL consists of one or more segMents of core, in full-word denomina-

tions aligned on full-word boundaries, linked together. The first word of

each slot contains the address of the first word of the next slot; the

second word contains the length of the slot in bytes. (Slots of 4 bytes

11



-10-

length have no second word; their short length is indicated by a minus sign

in the firs':. word.) Slots are ordered from longest to shortest.

A request for space from AVSL to create a new cell causes the smallest

slot whicn is still large enough to hold the cell to be removed from AVSL.

The bytes necessary for the new cell are taken from that slot, and any

"leftov-er" bytes are returned to AVSL, taking their place in order by size.

Cells to be erased, i.e., returned to AVSL, are put back in the lLst as

are leftovers from cell allocations. In returning pieces of storage to

AVSL, SLIP checks to see whether they are adjacent to slots already on

AVSL. If so, they are combined into one long slot and returned to AVSL

in that form.

Space Managing

In any list processing system, some provisions must exist for returning

unused cells to the list of available space so that no bit of space is

permanently lost. In SLIP, as much as possible of this erasing process is

handled by the system - -both to relieve -the user of needless space managing

chores and to guard against the possibility of errors.

Removing data cells presents no problol, since a data cell does not

control other storage. Removing header cells, however, which happens

whenever a list is erased, may pause problems. If, for example, list A

is a sublist of list B, one must noi.. erase A while B still exists. Erasing

A would not alter the structure of B, which contains a cell pointing to

the sublist A, and any subsequent effort to scan B's structure (e.g., using

reader facilities) would fail when it tried to enter i,he "sublist" which no

longer exists.



SLIP maneuvers around this difficIlty by means of each list's refer-

ence counter. When a list (e.g., A) is created, its reference counter is

usually 1. If A is made a sublist or the description list of another list,

A's reference counter is increased by 1. If an attempt is made to erase A,

via the ERASLST function, the reference counter of A is decreased by 1. Only

if the new value of the reference counter is 0 or less is A actually erased.

In the example, A would not be erased because it is a sublist.

If a list is actually erased, all its cells are returned to AVSL.

In addition, an attempt is made to erase all of the list's sublists and

its description list: the reference counters of those lists are reduced

by 1 and any of the lists whose new reference values are 0 or less hre

physically erased.

Example 1.

The following short program illustrates the use of some SLIP facilities

on a simple problem: dealing 200 blackjack hands from a complete deck.

Notes: (The numbers refer to statement numbers in DEAL)

2. NEWBOT is a generic function which in fact has entries for each
allowable SLIP data type; only the entry for character data is needed in
this program, so the full declaration for NEWBOT is not used.

3. LIST is also a generic function. Since only its first entry
point is needed, only that one is defined.

4. This initializes available space for SLIP.
5. The input cards are set to give DECK 52 sublists, each repre-

senting a card; each sublist contains two elements--the first is the
character string name of the card, e.g., CLUB.KING, and the second is the
point value of the card, e.g., 10. To simplify things, aces are assumed
to count 11.

6. N is the number of hands to be dealt.
7. This makes an empty SLIP list which will contain the cards from

each deal.
9. Each card, when dealt into HAND, will be marked with an index

number between 0 and 255 so that the card can't be dealt twice into the
same hand.

13



-12-

11. RANDEL's valu is the address of a randomly-selected element
(card) on DECK.

12. DATUM sets CARD equal to the datum in the cell addressed by
POINTR. Thus CARD is the name of the sublist with the card name and its
point value.

13. Don't put the same card twice into the same hand.
15. CARDSTRING is given the character name of the card being dealt.
16. The card is actually "dealt" onto HAND.
19. Iterate until the hand's count is 21 or more.
21. Print the cards dealt in the complete hand and
22. print the total point value.
23. Empty the list in preparation for the next deal.

14



DEAL: PROC OPTIONS(MATN);

STMT
1

LEVEL

2 1

3 1

4 1

5 1

6 1

7 1

8 1

1 1

10 1

11 1

12 1

13 1

15 1

16 1

17 1

19 1

19 1

21 1

22 1

23 1

24 1

25 1

-13-

NEST
DEAL: PROC CPTIONS(MAIN);
DCL (DECK, HAND, POTNTR, CARD) PTR, ;W, I, K, COUNT, ITSCOUNT)
FIXED BIN (31), RANDEL RETURNS (PTR), MARK RETURNS ( FIXED PT
(31)), NEWBOT GENERIC (NEWBOT9 ENTRY (PTR, CHAR(1) VAR)),
CARDSTRING CHAR (48) VAR, TOP RETURNS (CHAR(48) VAR),
HOT RETURNS (FIXED BIN (31)), READLST GENERIC (READLS1
ENTRY (PTR)), PRNTLST GENERIC (PRNTLS1 ENTRY (PTR));

DCL LIST GENERIC (LTST1 ENTRY (PTR));
CALL INITAS;
CALL READLST (DECK);

N = 200;
CALL LIST (HANSI);

DO I = 1 TO N;
1 K = MOD(I,256);
1 COUNT = 0;
1 LOOP: POINTR = RANDEL(CECK);
1 CALL DATTIM'POINTR,CARD);
1 IF MARK(CARD) = K THEN GO TO LOOP;
1 CARDSTRING = TOP(CARC);
1 CALL NEWBOT (HAND, CARDSTRING);
1 ITSCOUNT = BOT(CARD);
1 COUNT = COUNT + ITSCCUNT;
1 IF COUNT < 21 THEN GO TO LOOP;
1 CALL PRNTLST(HAND);
1 PUT DATA (COUNT);
1 CALL EMTYLST(HAND);
1 ENO;

END DEAL;

Below is sample output from the program shown above.

( DIAMOND.ACF HEART. FOUR CLUB.QUEEN )

COUNT= 25;
( SPADE. EIGHT SPADE. KING DIAMOND.QUEFN )
COUNT= 29;
( HEART. TWO DIAMOND.THREE SPADE. JACK CLUB. NINE )
COUNT=
( CLUB.TEN DIAMOND.JACK HEART.TEN )

COUNT= 30;
( CLUB. FIVE HEART. KING SPADE. TEN )

COUNT= 25;
( HEART. FIVE DIAMOND.QUEEN SPADE.FOUR HEART. JACK )
COUNT= 29;
( CLUB. SEVEN DIAMOND.QUEFN HEART. KING )
COUNT= 27;
( HEART.JACK HFART.KING DIAMOND.FIVE )
COUNT= 25;
( DIAMOND. ACE HEART.SIX CLUB.FOUR )
COUNT= 21;
( SPADE. SIX DIAMOND.THREE SPADE. KING CLUB. TEN )
COUNT= 29;

15



Facilities in SLIP

The following sections describe the types of things which can be done

using SLIP. In each section, a general description and its examples are

followed by a formal description of the functions introduced in the section.

The index at the end of this paper allows one to easily locate the descrip-

tion of any particular function.

In the description for each function, the allowable calling sequences

are listed; they include the list of possible variables. The names of the

variables are intended to indicate the data type of the variables. In

summary form, the 'ist below shows the exact data type for the dummy

variables used in the following sections.

LST, LST1, LST2, ORGL, COPY, COP2, HOST, DLST; PNTR, POINT, CELL, LINKR,

LINKL; RDR, RDR2. These are all pointer variables. (In general, all main

program variables which name lists or readers or otherwise address SLIP

cells should be pointer variables.) LST through DLST are list names (i.e.,

they contain the addresses'of list headers). PNTR through LINKL are cell

addresses; in some cases, the cells may be headers which would make the

variable a list name. RDR and RDR2 have the addresses of reader cells,

which makes them reader names.

DATM, DAT1, DAT2, OLDDAT, ATTR, VALU, OLDVAL, NUVAL. These are allow-

able SLIP data, which may correspond to any of the data types with ID values

between 1 and 11 in Figure 2.

DATID, ATID, VALID, LVL, INT, LNGTH, I, J. These are all binary

integers. The first three are used as ID values and, in particular, should

only have values between 1 and 11.

16



-15-

STRING may be any bit or character string.

FILENAM is the name of a stream input or stream output file.

X, Y, DX, and DY are floating point numbers. X and Y are one word

long; DX and DY are two words long.

VAR may be any variable which does not have a Dope Vector (i.e., any

nonstring, nonarray variable).

CODE is a binary integer with values between 0 and 9.

Initializing Available Space

In order to use SLIP functions, one must first set up the list of

available space so that SLIP cells ma: be created and erased. This is

accomplished by the statement "CALL INITAS;". In the program, this step

must be executed only once ana before any other SLIP functions are called.

It is often easiest to make this the first executable statement in the

program. (See Appendix A for a convenient way of insuring this.)

CALL INITAS; or CALL INITAS(INT);

This function makes available to SLIP all the unused machine storage

in the programmer's region. It also initializes all new space to 0 except

for the link words necessary to chain the segments of AVSL together.

INITAS sets in motion the housekeeping aspects of SLIP which will generate

new cells when required and erase old cells when no longer needed.

The argument INT, if included, is relevant to SLIP's error detection

procedures (see Appendix B). SLIP normally notes errors during execution

and continues processing; to keep from running indefinitely, SLIP tallies

those errors. By default, the program is terminated after 50 such errors;

the argument INT, if included, serves as the neri cutoff criterion.

17



-16-

Creating and Modifying Lists

The functions to be described in this section perform the basic func-

tions of creating lists, adding, subtracting, and replacing elements, re-

trieving data, reshaping lists, and erasing lists.

Example 2.

Certain models of memory taken from psychology utilize short-term

memory banks; these may be represented by SLIP list structures. Assume for

the following segments of program that MEMORY is a list whose elements are

the items cur antly held in short-term memory (e.g., CVC trigram pairs in a

paired associates learning task). The code shown will move new pairs into

memory and remove "forgotten" pairs- according to three different schemes.

A. Assume an infinite memory in which no old pairs are forgotten.

CALL NEWTOP(MEMORY, CVCONE II '=' CVCTWO);

Or, if one wishes to place the new pair at a random position on the list,

N = NUMBEL(MEMORY) + 1;
IF IRAND(N) = 0 THEN PLACE = MEMORY;
ELSE PLACE = RANDEL(MEMORY); / *PLACE is a pointer variable */
CALL NEWTOP(PLACE, CVCONE H CVCTWO);

B. If memory is of fixed length and the pair to be replaced by the

new pair is the oldest one, the following code will add new pairs to the

top of MEMORY and, if memory is full, remove the old pairs from the bottom.

CALL NEWTOP(MEMORY, CVCONE
II ,., II CVCTWO);

IF NUMBEL(MEMORY) > N THEN CALL POPBOT(MEMORY);



-17-

C. If the memory is of fixed maximum length, the following code will

replace randomly selected old pairs with new pairs when the memory is full.

IF NUMBEL(MEMORY) < N THEN CALL NEWTOP(MEMORY,CVCONE II '=' II CVCTWO);

ELSE CALL REPLACE(RANDEL(MEMORY),CVCONE h '=' II CVCTWO);

In examples 2B and 2C it is possible to retrieve the value of the

erased pair by using POPBOT or REPLACE as functions; e.g.,

OLDPAIR = POPBOT(MEMORY);

if OLDPAIR is a character string variable and one uses a slightly unorthodox

declaration for POTTOT or REPLACE, e.g.,

DCL POPBOT RETURNS (CHAR(20) VAR);

LIST(LST); or LST2 = LIST(LST); or LST = LIST(9);

LIST creates an empty list and in each of the statements above assigns

to LST the name of the new list (i.e., places the address of its header

cell in LST). In the second version, LST2 is also given the name of the

list.

If the argument is a pointer variable, the reference counter of the

list is set to 1. In that case, the list can be erased only by an explicit

call to ERASLST. If the argument is (the decimal constant) 9, the reference

counter is set to 0. The list may be automatically erased if, for example,

it is the sublist of another list which is erased.

CALL COPYLST(ORGL, COPY); or COP2 = COPYIST(ORGL, COPY);
or COPY = COPYLST(ORGL);

ORGL, COPY, and COP2 are pointer variables.

1.9



-18-

COPYLST creates an exact copy of the entire list structure named ORGL

and assigns the name of the copy to COPY and, if upropriate, COP2. If

COPY is already the name of a list, the contents of ORGL are placed below

the current contents of COPY.

COPYIST makes copies of all sublists and description lists in the list

structure of ORGL; thus the original and its copy are physically distinct.

The topography of the original is repeated in the copy; if, for example,

the original references the same sublist twice, the copy r('^r---es a

single copy of the sublist twice.

CALL EMTYLST(LST); or LST2 = EMTYLST(LST);

LST is made into an empty list; its data cells are returned to AVSL,

including sublists where appropriate. The description list of LST, if

there is one, is not erased. LST2 is given the name of the now empty list

(i.e., is made equal to LST).

CALL ERASLST(LST); or LVL = ERASLST(LST);

ERASLST first decrements the reference counter of LST by 1. If the

counter's new value is greater than 0, indicating that LST is still the

sublist or description list of some existing list, nothing further is

done.

All levels of LST are removed--top level, its description list, any

sublists, their description lists, their sublists, etc.--subject to the

same restrictions that apply to the main list: lists with a new refer-

ence level of more than 0 are retained.

If called as a function, ERASLST returns a binary integer whose value

is the new value of LST's reference counter. If LVL = 0, the list has been

erased.

20



-19-

CALL NEWTOP(LST, DATM); or PNTR NEWTOP(LST, DATM);
CALL NEWBOT(LST, DATM); or PNT1 = NEWBOT(LST, DATM) ;

NEWTOP (NEWBOT) creates a new SLIP cell containing DATM and places

that cell at the top (bottom) of the list named LST. All other cells of

the list are unchanged; the effect is of putting a new link in a chain

without breaking or rearranging any other links.

DATM may be any of the 11 data types which may be stored on lists;

NEWTOP and NEWBOT are generic functions with separate entries for each

data type (see Appendix C).

PNTR is a pointer variable which, if used, is given the address of

the newly created cell.

The first argument "LST" for either function may point at a cell on

a list rather than name the list; in that case, the new cell is placed to

the right of the addressed cell (for NEWTOP; to the left for NEWBOT).

CALL SUBTOP(LST, DATM [, ID] [, OLDDAT]);
CALL SUBBOT(LST, DATM [, ID] [, OLDDAT]);
CALL REPLACE(PNTR, DATM [, ID] [, OLDDAT]);

All three functions remove a data cell from a list and replace it with

a new cell containing DATM. (DATM must be an allowable SLIP data type; LST

and PNTR are pointer variables; and ID, if present, is a binary integer

whose value is the SLIP ID number corresponding to the data type of DATM.

If ID is omitted, it is assumed that DATM is the same type as the datum

of the erased cell.)

OLDDAT, if present, is given the value of the datum of the erased cell.

OLDDAT must be of the appropriate type; no conversion is made.

If LST names a list, SUBTOP replaces tne top data cell on the list and

SUBBOT replaces the bottom cell. As in the case of NEWTOP, LST may be the



-20-

address of any list cell: the only restriction is that the removed cell

may not be the list's header.

REPLACE replaces the cell addressed by PNTR; that cell may not be a

list header.

Programming note. In programs in which SUBTOP, SUBBOT, or REPLACE is

used to replace a single data type, it may be declared and used as a func-

tion which returns that datum type. For example, if only character string

data are replaced, one can say DCL SUBTOP ENTRY (PTRFIXED BIN (31))

RETURNS (CHAR (20)VAR); and then use statements like OLDSTR = SUBTOP (LST,

NEWSTR, 9).

CALL TOP(LST, DATM);
CALL BOT(LST, DATM);
CALL DATUM(PNTR, DATM);

LST is usually the name of a list, although it may be the address of

any list cell. PNTR is the address of any cell except a list header. DATM

is set to the value of the datum in the cell to the right of that addressed

by LST (for TOP) or to the left of that addressed by LST (for BOT), or in

the cell addressed by PNTR (for DATUM).

Programming note. In programs in which TOP, BOT, or DATUM is used

only for a single data type, it may be declared and used as a function

which returns that datum type. Two instances of this are shown in Example

1 above.

CALL POPTOP(LST[, DATMT
CALL POPBOT(LST[, DATM]
CALL REMOVE(PNTR[, DATM]);

These three functions work like TOP, "BOT, and DATUM and in addition

erase the cell in question. Because one may wish to remove a cell without



-21-

being given its datum, the DATM argument may be omitted. If DATM is

present, it must be of the same data type as the datum in the cell.

When the cell is removed from a list, the remainder of the list is

linked around the gap. The cell to be removed may not be a list header.

Programming note. If POPTOP, POPBOT, or REMOVE is being used only

to return a single datum type, it may be declared to return that datum

type and used in assignment statements, e.g., ZORCH = POPTOP(LST);.

CALL MOVER(LST1, LST2);
CALL MOVEL(LST1, LST2);

MOVER and MOVEL move the entire contents of LST2 onto LST1. MOVER

places the transferred cells at the bottom of any prior contents of LST1;

MOVEL puts the moved cells at the top of LST1, above its prior contents.

If LST2 is the address of a cell on a list rather than a list name,

then the cells moved are the ones between the addressed cell and the bottom

(for MOVER) or the top (for MOVEL) of the list containing the cell.

Input/Output Facilities for Lists

The functions described in the preceding section are useful for making

delicate and relatively small-scale modifications to lists. For creating

large or complicated lists, it is much more efficient to read the list from

a stream input file by means of READLST.

Also discussed in this section are the specialized functions for out-

putting lists or cells onto stream output files. They make it possible to

conveniently display list structures--either in a form which may subsequently

be reread by the input function (through PRNTLST) or in a form with more

list structure information for debugging (through PUTLIST and PUTDATM).

CALL READLST(LST [,'BREAK.)'] [, [4:]] [, FILENAM]);

23



-22-

READLST is a general function for reading list structures from stream

input files. The default file is SYSIN; this may be overridden by using

the FILENAM argument to indicate the desired file. READLST creates a new

list, assigns the name to LST, and makes its contents the structure given

in the input file. If LST already named a valid list, that list is erased.

The input format consists of a left parenthesis to indicate the

beginning of the list, followed by the elements of the list, followed by

a right parenthesis to end the list. The parantheses and the elements are

separated from each other by one or more break characters; thus parentheses

may be parts of elements if joined on either or both sides by nonbreak

characters. (The default break character is the blank, but may be altered

to any other character except (, ), or " by the argument 'BREAK=x', where

the substitute for x is the new break character.) Sublists are entered in

the same format within the delimiting parentheses for the higher list.

Description lists are entered as sublists except they are preceded by

"DLIST:" which serves as an identifier and is not interpreted as a list

element.

For example,

( DLIST: ( CONTENTS NOUNS NUMBER SINGULAR ) HORSE COW ( DLIST: (

TYPE DOGS ) DALMATION BEAGLE MUTT ) )

would produce a main list containing "HORSE" and "COW" and a sublist with

dog names; each list would have a description list.

All allowable SLIP data types may be read in; for each element, the

decision of which data type to assign is based on the element itself and

whether or not either option 'B' or option 'T' is selected. If option 'T'

(for text) is chosen, all elements are assumed to be character string

variables (ID = 9). The table below indicates the ID selections for the

default condition and for 'B' (fIninary).



-25-

Input Element Form ID Assignment
default 1131

Examples

[4] dddddd lor2 5 or 6 123 457 1011101 -999999
[4]bbbbbbbbB lor2 1 or 2 -1011101B 1B OB
[4]ddd.ddd 7 or 8 7 or 8 .01 1.0 -.00001 +125.

[4]bbbb.bbbbB 7 or 8 3 or 4 +.01B 11.01B 1010101.B
'bbbbbb'B 10 10 '100'B '1'B 'O'B

(all else) 9 9 WORDS '101' .85.5E4-1

Note.--"d" stands for any decimal digit 0-9; "b" stands for either
binary digit, 0 or 1.

The choice between adjacent codes 1 and 2, 3 and 4, 5 and 6, and 7

and 8 depends on the length of the number. If a fixed decimal number has

5 digits or less, or a float decimal number has 6 significant digits or

less, or a fixed binary number has 15 bits or less, or a float binary number

has 21 significant bits or less, it is given the ID of the shorter precision.

If numbers are longer than 15 or 16 digits or 31 or 53 bits (fixed and

floating point, respectively) the most significant extra places are lost.

Bit strings (ID = 10) may contain up to 2048 bits. Character strings may

have 1p to 256 characters.

The data representations correspond to the form for constants written

in PL-I programs with one exception: character strings are stored in toto;

delimiting single quotes (') are not necessary and, if present, are stored

as part of the string. E-format numbers are not allowed; they would be

interpreted as character strings.

The binary option (IBI) allows one to read fixed or float decimal or

binary. Because it is awkward to write binary numbers and because the 360

performs fixed decimal arithmetic slowly, the default option assumes that

any number should be stored as either fixec .inary or float decimal.

(These are the default PL-I data types also.)



-214-

It is sometimes handy to create list structures in which a single list

is a salist :It two or more points--or is its own suulist. To read such

lists, one can indicate each repeated list by assigning it a distinct number

the first time the list is read and simply repeating the number whenever the

list is to be rereferenced. The numbers need not form any sequence.

For example,

("83" THIS LIST REPEATS ( THIS ONE DOESN'T ) ("83"

) DLIST: ("83" ) )

The main list is its own sublist and its own description list. Note that

unreprated lists need no index number. Note also that there is no space

separating the left parenthesis from 'ale index, but there is one between the

index and the right parenthesis.

In record-oriented I/O, it has been customary for lists to begin in

the first c^lumn of a card or record. No such restriction is relevant to

stream I/O. In the current implementation of READLST, the input file is

read in 80-character segments. A new segment is read at the start of each

call to RYADLST. Therefore one must begin each list beyond the 80-character

block which contained the end of the previous list or after the end of

previous data read by a GET statement. To be safe, allow at least 80

characters before the start of any list. (Or, if one is really using card

input with only lists in the input stream, it is more convenient and

equally reliable to start each list on a new card.)

Notes. The characters between the end of one list and the start of

another need not be break characters; they may be anything except left

parentheses, such as phrases identifying the contents of the coming list.

READLST will scan only three 80-character segments for the start of

a list. If it has not found a left parenthesis in those 240 characters,

26



-25-

READLST will print an error message and return control without creating a

new list.

CALL PRNTIST(f.ST [, 'BREAK=xt] [, 'B'] [, FILENAM]);

PRNTLST prints the contents of the list structure named LST on an

.A:.tput file--either SYSPRINT or, if the FILENAM argument is present,

FILENAM.

The output format is identical to that required by READLST: lists

are delimited by parentheses; description lists are printed as sublists

with the label DLIST: in front of the left parenthesis, etc. The default

break character is the blank; it may be changed to any desired value

except (, ), cr " by using the 'BREAK=x' argument.

If the argument 'B' is omitted, i.e., the default is chosen, numbers

are printed as either fixed or float decimal values. If 'B' is chosen,

data with ID = 5-8 are printed as decimal numbers and data with ID = 1-4

are printed as fixed or float binary numbers. Character and bit string data

are printed as indicated for READLST under either option. Since binary

numbers are difficult to interpret visually, one should prefer the default

printing style unless he wants to preserve the distinction between binary

and decimal machine representation.

Within the list structure, if a list is referenced more than once, it

is given an index number for the first appearance of the list; the index

number alone appears for each additional reference to the list. The number

is, in fact, the name of the listthe address of its header--printed in

hexadecimal.

CALL PUTLIST(LST);
CALL PUTDATM(PNTR);

PUTL1ST and PUTDATM are intended more as debugging aids than as con-

venient list output devices. PUTDATM prints the contents of the single



-26-

cell addressed by PNTR, which may be the name of a header cell as well as

of any data cell. PUTLIST prints the list named by LST, one cell per

printed line, including sublists but excluding description lists.

Printout for each cell consists of its ID, LNKL, LNKR, and the datum;

for a header cell, this includes two items: the name of the description

list and the reference counter.

All items which are addresses- -LNKL, LNKR, and sublist and description

list names--are printed as hexadecimal constants. Other data are printed

in forms consistent with the data types.

The Reader Facility

In order to take full advantage of the power of list processing, the

user must have some general means of scanning lists whose exact structure

could not be known during the programming. Readers provide such a mechanism.

A reader is essentially a pointer which can be moved through a list struc-

ture to find certain data or data types, can be backed up or moved forward,

and can perform these activities in a list structure of any degree of

complexity.

Readers are specialized SLIP cells made up of 4 words organized as

shown below:

Reader field

Bytes

IDILINK LVICNT LOFRDR CELLPNT

0
i

1-3 4-7 8-11 12-15

The ID for such cells is 13. In place of the usual LNKL is a LINK address

which points to the next reader cell on the stack, if any (a new reader

cell is generated for each level descended into the list's sublist



-27-

structure). In place of MARK and LNKR is the integer LVLCNT, which is the

number of levels into the list structure the reader has descended as well

as the number of additional cells in the reader stack. LOFRDR is the name

of the list (or sublist) currently being scanned, and CELLPNT is the

address of the actual cell being pointed to.

Example 3.

This example shows two slightly different procedures for counting the

sublists in a list structure. The first counts only the sublists on the

main list. LST is the name of the list, RDR a pointer variable which will

be the name of the reader, and FLAG is a bit string 1 bit long.

RDR = RDROF(LST);

N = 0;
I= 11;

LOOP: CALL ADVLNR(REE,FLAG,I);

IF -FLAG THEN GO TO NEXT;
N = N + 1;
GO TO LOOP;

NEXT: CALL ERASRDR(RDR);

A reader is created for LST and RDR is
given the address of the reader cell.
Initially the reader points to LST's
header.

The reader is advanced to the first cell
on the main list which contains a sublist
name--i.e., has an ID of 11. FLAG = '1'B
if a sublist name was found; 101B if none
was found. ADVLNR (advance linearly to
the right) moves the reader down the list
but does not move it into sublists.

At this point N = the number of sublists
in the main level. ERASRDR erases the
reader cells since there is no further
need for the reader.

The second version counts all of the sublist name cells in the entire

list structure. CELL is another pointer variable; MARK and SETMARK are

functions for testing and changing the MARK portion of SLIP cells.



-28-

RDR = RDROF(LST);
N = 0;
I = 11.;

LOOP: CALL ADVSTR(RDR,I,FLAG); ADVSTR (advance structurally to the right)
will move the reader through LST's entire
structure, entering sublists as they are
encountered.

IF -FLAG THEN GO TO NEXT; Quit when the scan has gone through the
entire structure, as before.

CELL = CELLPNT(RDR); CELL is given the address of the cell
actually pointed to by the reader.

IF MARK(CELL) = 0 THEN DO; As each sublist cell is counted, it is
N = N + 1; marked so that it won't be counted twice-
CALL SETMARK(CELLII); as it world, for example, if the same

END; sublist was referenced twice and it had
GO TO LOOP; one or more sublist cells.

NEXT: IF' N > 0 THEN DO; Erase any marks that were made during
RELOOP: CALL ADVSTR(RDR,I,FLAG); the counting process.

IF FLAG THEN DO;

CALL SETMARK(CELLPNT(RDR)
10);

GO TO RELOOP;
END;

END;

CALL ERASRDR(RDR);

RDR = RDROF(LST);

If LST is the name of a list, then RDROF creates a reader cell for

that list and assigns the address of the cell to RDR. The reader initially

points to the header of LST--i.e., its LOFRDR and CELLPNT sections both

contain the address of the list.

RDR2 = COPYRDR(RDR1);

If RDR1 is the name of a reader, a copy of the entire reader stack is

made and RDR2 is made the name of the copy. This function is useful in cases

in which one may want to make several different scanning passes at a list

:30



after reaching some point in the liFt;. The copy insures that one can

always come back to the same point for the next scan.

CALL ERASRDR(RDR); or LVL = ERASRDR(RDR);

ERASRDR erases the reader named by RDR; all the cells in the reader

stack are returned to AVSL. If LVL is present, it iJ set to the LVLCN

of the reader- -i.e., how many lists deep into the list structure it had

descended.

CALL ADVSTR(RDR [, DATID] [,FLAG] ; or PNTR = ADVSTR(RDR [,DATID] [,FLAG]);
CALL ADVSTL(RDR [,DATID] [,FLAG]); or PNTR = ADVSTL(RDR [,DATID] [,FLAG] ;

CALL ADVLNR(RDR [,DATID] [,FLAG]); or PNTR = ADVLNR(RDR [,DATID] [,FLAG]);
CALL ADVLNL(RDR [,DATID] [,FLAG]); or PNTR = ADVLNL(RDR [,DATID] [,FLAG]);

These functions perform the actual scanning operations. They may

move the reader to the right (downward) via ADVSTR or ADVLNR or to the

left (upward) via ADVSTL or ADVLNL. If it encounters sublists on the list

being scan ,ed, the reader may move structurally into the sublist via

ADVSTR or ADVSTL or it may continue linearly along in the same list via

ADVLNR or ADVLNL.

If called in assignment statements, the reader advance subroutines

give PNTR the address of the cell advanced to, unless the advance fails

to find a proper datum cell, in which case PNTR is set to NULL.

In the full argument list, RDR is a pointer variable naming the reader,

FLAG is a bit string of length 1 whose value is set to '1'B if an accept-

able datum is found and TOTB if none is found, and DATID is a binary integer

with values between 1 and 11 to indicate the type of data cell to be found.

FLAG and/or DATID may be omitted from the calling sequence. If DATID is

omitted, any data cell may satisfy the scan.



-30-

If RDR is advanced by ADVLNR or ADVLNL, the following actions take

place: (a) CELLPNT is made equal to the address of the next cell to the

right (left) of the one it was pointing to. (b) If the new cell is the

header of the list (i.e., LOFRDR = CELUNT), FLAG (if present) is set to

'O'B, and the function returns. (c) Or, if the ID of the new cell = DATID

or if DATID was omitted, FLAG (if present) is set to 111B; PNTR (if present)

is given the cell's address, and the function returns. (d) Otherwise, an

acceptable cell hasn't been found, but the list, has not been completely

scanned, so step (a) is repeated.

If RDR is advanced via ADVSTR or ADVSTL, the same basic :canning process

occurs except for modifications which allow RDR to scan the entire list

structure rather than just the top level. (e) When the reader is advanced

to a cell containing a sublist name (and that isn't the desired datum type),

a new reader cell is created for the sublist (pointing initially to the

header of the sublist). The scan then continues in that sublist, searching

its cells for the type of datum desired. (This process may repeat endlessly,

allowing sublists of sublists of sublists, etc., to be scanned.) (0 If

the scan fails in a sublist (i.e., lands back on the header without finding

a proper target), the reader cell which was created for that sublist is

erased and the scan continues, in the list one level higher, with the cell

one to the right (left) of the one which had named the sublist.

No matter how simple or complex the past scanning of a reader, it may

be advanced further by any of the four ADV functions, In particular,

thr.re is no problem with advancing a reader via ADVLN_ which had been left



-31-

pointing in a sublist of the main list by a previous ADVST_ call. (In such

cases, the reader acts like a linear reader of the given sublist.)

Note. ADVSTR and ADVSTL have built-in protection against list struc-

tures which loop back on themselves. By SLIP standards, for example, it

is fine to construct a structure of lists A and B such that each is a sub-

list of the other. In such a structure, an unsophisticated reader could

enter sublists indefinitely without ever running out of sublists, since

it would be tracing a loop. Therefore, when ADVSTR or ADVSTL is asked to

enter a sublist, it checks the reader's stack to make sure the sublist

is not one which, at a higher level, RDR is already scanning. If this is

true, RDR is advanced linearly to the next cell beyond the one with the

sublist name, just as is normally done by ADVLNR and ADVLNL.

CALL INITRDR(RDR); or RDR2 = INITRDR(RDR);

INITRDR initializes the reader within the list currently being scanned-

that is, the reader is set pointing at the header of whatever list or sub-

list is currently being scanned. (If the reader was already pointing to

the header, no change occurs.) RDR2, if present, is given the name of the

reader.

CALL LVLRVT(RDR); or RDR2 = LVLRVT(RDR);
CALL LVLRVT1(RDR); or RDR2 = LVLRVT1(RDR);

These functions move a reader back up a list structure. The reader

may back up one level (with LVLRVT1) or as many levels as necessary to

reach the top level (with LVLRVT). (Each step of backing up is accom-

plished by popping the top cell off the reader, leaving the reader pointing

to the cell from which it had entered the lower sublist.) The reader is

left pointing to the cell of the proper level from which the reader had

33



-32-

descended. If the reader was somewhere in the top level when either func-

tion was called, there would be no action taken. RDR2, if present, is set

to the name of the reader.

Programming note. These functions, along with INITRDR, are useful

for reinitializing a reader without having to erase it and then create a

new one. The statement CALL INITRDR(LVLRVT(RDR)); first brings the reader

back into the main list and then makes it point to the header; this is

exactly as the reader was when first formed.

CALL REED(RDR,DATM);

REED sets DATM equal to the datum of the cell currently pointed to by

RDR. It assumes the data types match. (If the reader points to a list

header, no assignment is made.)

Programming note. If REED is only used to assign a single data type,

it may be declared as a function which returns that type and then used in

statements like DATM = REED(RDR);.

INT = LVLCNT(RDR);

INT is given the LVLCNT value for the reader named RDR. If the reader

is in the top level of the list, INT = 0; if the reader is in a sublist,

INT = 1; if the reader is in a sublist of a sublist, INT = 2; etc.

LST1 = LOFRDR(RDR);

LST1, a pointer variable, is given the name of the list currently

being scanned by RDR. This may be the list for which RDR was originally

created, if LVLCNT = 0, or it may be the name of any of the list's sublists.

CELL = CELLPNT(RDR);

CELL is given the address of the cell currently being pointed to by

the reader.



LRDTRj '

CALL SEARCH( ( DATM, DATID [, PTR]);

or FLAG = SEARCHU
RDR

)
,

DATM, DATID [, PTR]);

SEARCH scans the list LST fo/ an occurrence of DATM, which is a datum

of the type with ID = DATID. If the search is successful, the argument PTE

(if present) is given the address of the cell in which the datum was found

and FLAG (if present) is set to '1'B. If the search fails, PTR is set to

NULL and FLAG = 'O'B.

The search always proceeds by means of a reader advanced by ADVSTR;

thus if DATM is on LST or ..1-1y of its sub lists the search succeeds.

If the first argument is LST, the name of the list, then the search

begins at the top of the list. If one wanted to search for different

occurrences of the same datum, for example, an alternative exists. One

can create a reader for the list (e.g., RDR = RDROF(LST);) and then use

the reader as the first argument in the calling sequence. Then SEARCH

scans LST from the cell at which the reader was pointing. The following

code, for example, will count the occurrences of THE on LST:

N 0;

RDR = RDROF(LST);
LOOP: FLAG = SEARCH(RDR, 'THE', 9);

IF FLAG THEN DO;
N= N+ 1;
GO TO LOOP;

END;

CALL ERASRDR(RDR);

Description List Functions

Any list may have a description list, and that description list may

have any structure desired. Classically, however, description lists have



-34-

been thought of as lists of attribute dimensions plus values for those

dimensions which define or describe the main list. For example, if a

list is NEWCAE, it might have these attributes and values: MAKE, STUTZ-

BEARCAT; PRICE, 8350; YEAR, 1970; STYLE, CONVERTIBLE; COLOR, BURGUNDY; etc.

This type of description list is organized as a linear list with

adjacent cells representing attribute-value pairs. The top cell of the

list is the name of the first attribute dimension (e.g., MAKE), the cell

below that is the list's value on that dimension (e.g., STUTZ-BEARCAT),

etc. The functions described below are used to add, remove, and locate

attributes and values on such a list.

Example 4.

This example shows the use of description lists in the context of

another card problem. The procedure PLAYHI is intended (for bridge, say)

to play a card on a trick to which other cards have already been played.

From HAND, PLAYHI must select a card from the right suit and make it either

the highest card in the hand's suit, if it will beat the cards already

played, or the lowest card in the suit.

Let us (and PLAYHI) assume that HAND contains 4 sublists, one per

suit, each having whatever cards of that suit the hand contains arranged

by rank, with the highest card at the top. Let each sublist also have a

description list with the following attribute pairs: NAME, (SPADES or

HEARTS or DIAMONDS or CLUBS); NTJMBER.OF.CARDS, (#); and RANKS (sublist

with integers from 1 (deuce) to 13 (ace) for each of the cards the suit

has).

36



-55-

PLAYHI: PROC (HAND, SUITNAM, RANKIII) CHAR (20) VAR;
DCL (RDR, HAND, MUTT, PNTR) PTR, RDROF RETURNS (PTR),

(NAME, SUITNAM) CHAR (8) VAR, RETN CHAR (20) VAR,
RANKHI FIXED BIN, NEWVAL ENTRY
(PTRFIXED BIN, FIXED BIN), ITSVAL ENTITY (PTR, FIXED BIN,),
TOP RETURNS (FIXED BIN), (POPTOP, POPBOT) RETURNS (CHAR (20)
VAR), ADVLNR GENERIC (ADVLNR)+ ENTRY (PTR) RETURNS (PER)),
CONTS RETURNS (PTR), SUIT PTR BASED (PSUIT);

RDR = RDROF(HAND);
LCOP:PSUIT = ADVLNR(RDR);

PSUIT = CONTS(PSUIT);

CALL ITSVAL(SUIT, 'NAME',9,

IF NAME- = SUITNAM THEN GO
TO LOOP;

CALL ITSVAL(SUIT,'NUMBER.OF.
CARD6',9,N);

IF N 0 THEN DO;
RETN = ";
GO TO SCOOT;

END;
CALL NEWVAL(SUIT,

'NUMBER.OF.CARDS',9,N-1,1)

CALL ITSVAL(SUIT, 'RANKS',9,
PNTR);

N = TOP(PNTR);
IF N > RANKHI THEN DO;
CALL POPTOP(PNTR);
RETN = POPTOP(SUIT);

END;
ELSE DO;

CALL POPBOT(PNTR);
RETN = POPBOT(SUIT);

END;

SCOOT: RETURN (RETN);
END PLAYHI;

PSUIT is set pointing to the datum of
the new cell; thus SUIT becomes the
name of the next suit sublist.

NAME); NAME is given the SUIT's
value on the attribute NAME.

Scan Lntil correct suit is found.

N gets the integer number of cards in
the suit.

If no cards, return the null string
to tell the main program so.

Decrement the nuMber of cards value to
; compensate for the card removed below.

PNTR is made the name of the sublist
with the card ranks.

Play a card to try to win the trick.

Play the lowest card in the suit.

CALL MAKDLST (HOST, DLST); or LST = MAKDLST(HOST, DLST);

MAKDLST takes two already-created lists and makes the second the

description list of the first. If HOST already had a description list,

it is erased.



-36-

If used in an assignment statement, MAKDLST returns the name of the

host list.

CALL NODLST(HOST); or LST = NODLST(HOST);

If the list named by HOST has a description list, it is erased and

removed from HOST. LST, if rresent, is made the name of the host list.

Both MAKDLST and NODLST may be used on description lists of any form.

CALL NEWVAL(HOST, ATTR, ATID, NUVAL, VALID [, OLDVAL]);

On the description list of HOST, the old value of ATTR is removed

and replaced by NUVAL. ATID is the SLIP ID of the attribute and VALID

is the ID of the new value; both must be present. If OLDVAL is included

in the argument list, it is given the old value for the attribute. OLDVAL

must be of the same data type as the old value.

If there was no old value, and in fact was no ATTR on the attribute

list, ATTR and NUVAL are added as the bottom pair of cells on the list.

If there was no attribute list for HOST, one is created with ATTR

and NUVAL on it.

Programming note. If NEWVAL is to return old values of only one data

type, the user can declare the function to return that type and then use

assignment statements like this:

OLDVAL = NEWVAL(HOST, ATTR, ATID, NUVAL, VALID);

The same procedure may be applied to ITSVAL and NOVAL, described

next, if appropriate.

CALL ITSVAL(HOST, ATTR, ATID, VALU);



-57-

ITSVAL searches the attribute list of HOST for the attribute ATTR,

whose SLIP ID is given by ATID. If it is found, VALU is given the value

for ATTR. VALU must be of the same data type as the attribute's value.

CALL NOVAL(HOST, ATTR, ATID [, VALU]);

NOVAL removes from the description list of HOST the cells with the

attribute ATTR (which has ID ATID) and with the attribute's value. I::

VALU is included in the argument list, it is given the value of the

erased attribute.

DLST = NAMDLST(HOST);

If HOST has a description list, then DLST is given the name of that

description list.

Boolean Tests

The functions described below are ones giving True-False answers

about certain properties of specific lists. SLIP routines use these func-

tions (particularly LSTNAME) to test the arguments they are given so that

they do not blithely manipulate randc-m storage locations. They may be

useful in user programs as switches to leave or enter a section of the

program, or as tests to guard against improper manipulations. Many SLIP

functions return nothing if given invalid arguments and, at least in some

parts of the user program, it is desirable to check the output of such

functions before continuing.

FLAG = LSTNAME(LST);

If LST is the name of a valid list. FLAG is set to '1'B; otherwise,

'O'B. LSTNAME checks teat the addressed cell has ID = 12 and that the

top and bottom cells of the list in fact point back to the header.



-38-

FLAG = CELLNAM(PNTR);

Tf PNTR points to a valid cell which is part of a list, FLAG ='1113;

otherwise, FLAG = 'O'B. CELLNAM checks that the cells to the right and

left of the one named by PNTR point back to it and that the ID is between

1 and 11.

FLAG = RDRNAME(RDR);

If RDR points to a validly-formed reader cell, FLAG = 'l'B; otherwise,

FLAG = 'O'B. The function tests the ID of the cell and whether its LOFRDR

points to a list and its CELLPNT points to a valid cell.

FLAG = LSTEMTY(LST);

If LST names an empty list consisting of the header and no data cells,

FLAG =

FLAG = LSTSEQL(LST1, LST2);

FLAG = 'l'B if LST1 equals LST2, 'O'B otherwise. LST1 "equals" LST2

if they both point to the same list or if (a) both list structures have

equal data cells (ID = 1-10) at all points and (b) both cite the same or

equal sublists at the same points. The list topographies must also match:

if LST1 cites the same sublist twice, LST2 must also cite its version of

the sublist twice. Description lists are not checked.

Random Number Functions

INT = NUMBEL(LST);

NUMBEL returns the integer number of data cells on the main list

named LST. It does not count cells on sublists, nor does it count LST's

header.

PNTR = RANDEL(LST);



RANDEL returns the address of a randomly-selected data cell from the

main list LST. It will not select a cell from a sublist, although it may

select a datum cell in LST which names a sublist.

The following functions generate random numbers according to several

possible formats. Their use is not necessarily related to SLIP, and they

may in fact be used in any PL-I program. The functions may also be called

from FORTRAN programs or Assembly Language programs.

All the generating functions -7,e a technique originally proposed V

Tausworthe (1965) and described by Nhittlesey (1968). From a starting

64-bit random number, the next number in the pseudorandom sequence is

generated by 0Ring operations performed by ne following machine code

(RANDUB is the 64-bit number):

LM 2,3,RANDUB
LR 4,2
LR 5,3
SLDL 4,1
XR 5,4
XR 2,3
LPR 2,2
STM 2,5,RANDUB

This procedure has the advantages of high speed (far a subroutine call),

minimum storage req,dremeiits, uniformity of distribution, and freedom

from systematic sequential dependencies.

CALL SETRND(DX);

DX is a two-word long configuration by which the user provides the

starting value for the generating sequence. If DX is greater than 0, it

is used as the initial value; if it is 0 or negative, the 64-bit generator

number is created from the current value of the computer's clock. By



this latter option, a program can be written to automatically generate a

new starting point every time it is run.

The generator number is initially set to a usable value, so it is

not necessary to use SETRND prior to using any of the following functions.

(Suitable starting numbers ought to have almost equal numbers of 0 and

1 bits.)

I = IRAND(J);
X - RAND(Y);
DX = DRAND(DY);
DX - DRANDM;

(RAND returns a binary integer between 0 and J-1, inclusively. J

must be a positive binary integer.

RAND returns a single word floating point number between 0 and Y--

which must be a positive floating point number.

DRAND and DRANDM return double word floating point numbers. DRANDM

returns a value between 0 and 1, while DRAND returns a value between 0

and DY, a double word floating point number. (Note. To conform to

FORTRAN's calling conventions, DRANDM must be invoked by a statement

such as CALL DRANDM(DX).)

DZ = SAVRND;

SAVRND returns the double word number used in generating the pseudo-

random numbers in the functions above. By using SAVRND at the end of

one day's random number generation, it is possible to initiate the

generator with that value on the next run, via SETRND, thus continuing

with one long sequence of numbers. (In FORTRAN, SAVRND must be invoked

via CALL SAVRND(DZ).)

42



Other Functions

The rest of the functions described below are ones which deal with

cells and data storage in more detail. With the exception of the list

marking functions, the user should have few occasions to use them.

Cell information retrieval functions.

INT - ID(PNTR);
INT MARK(PNTR);
POINT = LNKR(PNTR);
POINT = LNKL(PNTR ;

If PNTR contains the address of any SLIP cell, these four functions

return the value from their particular portion of the cell's links word.

POINT = CONTS(PNTR);

If PNTR contains the address of a SLIP cell, CONTS returns the address

of the cell's datum.

POINT = LINKS(PNTR);

If PNTR has the address of the datum of a cell, LINKS returns the

address of the cell. (LINKS and CONTS are opposites; CONTS returns

PNTR + 8 and LINKS returns PNTR - 8.)

INT = REFCNT(LST);

REFCNT returns the reference counter value from the header of the

list named LST.

Functions for altering cell links field information.

CALL SETID(PNTR, INT);
CALL SETMARK(PNTR, INT);

SETID and SETMARK insert the value (modulo 256) of the binary integer

INT into the ID and MARK portions of the cell addressed by PNTR. Caution:

If one uses ID values other than 1-13 for list cells, most SLIP functions

will misinterpret or simply fail on such cells.



-112-

CALL SETLNKR(PNTR, POINT);
CALL SETLNKL(PNTR, POINT);

SETLNKR (SETLNKL) inserts the address contained in POINT into the

LNKR (LNKL) field of the cell addressed by PNTR. These functions should

also be used cautiously, since they directly alter the structure of the

list containing the cell.

CALL SETIND(PNTR, IDVAL, LINKL, LINKR);
CALL SETDIR(CELL, IDVAL, LINKL, LINKR);

These functions may be used to set the ID and/or the LNKL and/or the

LNKR fields of a SLIP cell. If one or more of the fields are not to be

changed, the corresponding argument should be the binary integer -1 or the

pointer variable NULL. SETIND changes the cell addressed by PNTR; SETDIR

changes CELL itself.

CALL MRKLSTS(LST, INT);

If LST names a list structure, MRKLSTS sets the MARK portion of the

headers of LST and all its sublists to the value of INT (mod 256). This

is often useful to reset the MARKs after a scanning or searching operation

has used header MARKs to remember which lists had been scanned. MRKLSTS

ignores description lists.

Miscellaneous functions.

INT = STRLNTH(STRING);

If STRING is the name of any PL-I string variable, STRLNTH returns its

current length as read from the Dope Vector. This function is usefully

different from the PL-I built-in function LENGTH only in the case of

strings defined as fixed length which have been treated by SLIP as vari-

able length.

PNTR = NEWCELL(DATM);

44



If DATM is any allowable SLIP datum, NEWCELL creates a new cell con-

taining DATM and returns the address of the cell. The ID of the cell is

set to the proper value between 1 and 11; the MARK, LNKL, and LNKR fields

are O.

PNTR = MAKCELL(DATM, DATID);

This function actually does the work of obtaining new cells from AVSL.

DATM is stored in the cell and DATID is stored as the cell's ID. PNTR is

given the address of the new cell.

CALL PCELL(PNTR);

RCELL actually returns erased cells to AVSL. PNTR addresses the cell

to be returned, which can have an ID only between 1 and 11. RCELL simply

returns the cell; in particular, it does not link other list cells around

the removed cell.

CALL INSERTR(PNTR, POINT);
CALL INSERTL(PNTR, POINT);

The cell addressed by POINT, which must not be part of a list, is

inserted to the right (left) of the list cell addressed by PNTR.

FLAG = COMPARE(DAT1, DAT2, DATID);

COMPARE tests the equality of two SLIP data, both of ID type DATID,

and returns '1'B if they are equal or 'O'B if they are not. DAT1 and

DAT2 must be the data themselves, not pointers to the data. Two strings

of unequal length are considered equal if they are equal for the common

length and if the longer is blank (for character strings) or 0 (for bit

strings) for the extra length; this is in accord with PL-I conventions.

CALL DSADUMP;
CALL LDUMP(VAR, LNGTH, CODE);



-44-

Both these functions are intended primarily as debugging functions.

They use the FORTRAN library function PDUMP; thus, to use them, the user

must include the FORTRAN library (FORTLIB) in the list of libraries avail-

able to the linkage editor and must define the standard FORTRAN output

file in the execution step (e.g., i/GO.FT9(6411 DD SYSOUT=A).

DSADUMP dumps the dynamic storage area of the program or subroutine

in which the calling statement is placed. This is often useful because

it gives the status of the 16 index registers at the time DSADUMP was

called and the values of all the dynamic-allocation variables in the pro-

gram or subroutine at the time of the call. (These are all unlabeled; the

user must have some knowledge of PL-I program organization and a program

object code listing to make sense of the dump.) The dump is in hexadecimal.

LDUMP dumps the section of core storage beginning with the variable

VAR and continuing for approximately LNGTH bytes. LNGTH may be negative,

in which case VAR is the upper end of the dumped core. CODE is a binary

integer indicating the form of the dump, according to the following table

(the parenthesized values are useless in a PL-I dump):

CODE Interpretation of data for output

0 Hexadecimal.
(1) Boolean, in byte chunks (T if at least one 1 in the
(2) Boolean, in word chunks. byte, F if all 0).

(3) Halfword binary integer.
4 Fullword binary integer.
5 Fullword floating point.
6 Double word floating point.

(7) Fullword floating point, complex.

(8) Double word floating point, complex.
9 Characters, 1 per byte.

46



The three arguments may be repeated any number of times, so that a

single call to LDUMP can produce dumps of different segments of core, dif-

ferent lengths, or different output formats.

Neither function terminates execution of the main program; thus they

may be used to print key areas of storage several times in a single run.



Name and Argument List

-46-

Index of SLIP Functions

Purpose Page

ADVSTR(RDR [, DATID][, FLAG]) advance reader structurally 29
ADVSTL (linearly) to the right (left)
ADV LNR

ADVLNL

BOT(LST, DATM)

CELLNAM(PNTR)

CELLPNT(RDR)

COMPARE(DAT1, DAT2, DATID)

CONTS(PNTR)

COPYLST(ORGL, COPY)

COPYRDR(RDR1)

DATUM(PNTR, DATM)

DRAND(DY)

DRANDM

DSADUMP

what is the list's bottom datum? 20

is the argument a cell's name? 38

to what cell does a reader point? 32

compare two data 43

what is the address of a cell's datum? 41

create a copy of a list structure 17

create a copy of a reader 28

what is a cell's datum? 20

random number (long floating point) 40

unit random number (long floating 40
point)

dump the program's dynamic storage 43

area

EMTYLST(LST) empty a list 18

ERASLST(LST) erase a list 18

ERASRDR(RDR) erase a reader 29

ID(PNTR) what is a cell's ID value? 41

INITAS([INT]) initialize the available space list 15

INITRDR(RDR) initialize a reader within its level 32

INSERTR(PNTR, POINT) insert a cell to the right 43
INSERTL (left) in a list

48



Name and Argument List

IRAND(J)

-47 -

Purpose

random number (long binary integer)

ITSVAL(HOST, ATTR, ATID, VALU) what is the attribute's value?

LDUMP(VAR, LNGTH, CODE)

LINKS(PNTR)

LIST(LST)

LUKL(PNTR)
LNKR

LOFRDR(RDR)

LSTEMTY(LST)

LSTNAME(LST)

LSTSEQL(LST1, LST2)

LVLCNT(RDR)

LVLRVT(RDR)

LVLRVT1(RDR)

MAKCELL(DATM, DATID)

MAKDLST(HOST, DLST)

MARK(PNTR)

MOVER(LST1, LST2)
MOVEL

MRKLSTS(LST, INT)

NAMDLST(HOST)

NEWCELL(DATM)

NEWTOP(LST, DATM)
NEWBOT

dump core segment by length

what is the address of the cell
datum's links portion?

create (an empty) list

what is a cell's LNKL (LNKR) value?

what is the list of a reader?

is a list empty?

is the argument a list name?

are two list structures equal?

what is the reader's level?

revert to the top level

revert one level back

create a new cell

make a description list

what is a cell's MARK value?

move a segment of a list to the
right (left) in another list

set the MARKs of the headers in
a list structure

what is the name of the description
list?

create a new cell

put a new datum at the top (bottom)
of a list

;,.

40

JU

4;

41

)2

58

)7

)8

31

j1

43

55

4

20

42

37

42

19



Name and Argument List

NFWVAL(HOST, ATTR, ATID,

NODLST(HOST)

NOVAL(HOST, ATTR, ATID [,

NUMBEL(LST)

POPTOP(LST [, DATM])
POPBOT

-48-

Purpose Page.

NUVAL, VALID [, OLDVAL])
give the attribute a new value

remove and erase the description list

VALU]) remove the attribute and its value

how many elements are on a list?

pop the top (bottom) cell from a list

36

56

57

58

20

PRNTLST(LST [, tBREAK=sx'][,vBv][, FILENAM]) print a list structure 24

print a cell and its datum 25

print a list structure in debugging 25
format

random number (floating point) 40

select a random list element 38

return a cell to AVSL 43

is the argument a reader's name? 38

make a reader of a list 28

PUTDATM(PNTR)

PUTLIST(LST)

RAND(Y)

RANDEL(LST)

RCELL(PNTR)

RDRNAME(RDR)

RDROF(LST)

READLST(LST [, 'BREAK =x'][, ('B' or tT?)][, FILENAM]) 21
read a list structure from stream
input

REED(RDR, DATM)

REFCNT(LST)

REMOVE(PNTR [, DATM]) remove a cell from a list

REPLACE(PNTR, DATM [, DATID][, OLDDAT]) replace a datum cell

what is the datum to which the reader 32
points?

what is a list's reference counter?

SAVRND save random number generator value

SEARCH((LST or RDR), DATM, DATID [, PNTR])
search a list structure for a datum

so

41

20

19



Name and Argument List Purpose Pace

SETDIR(CELL, IDVAL, LINKL, LINKR)
SETIND(PNTR, IDVAL, LINKL, LINKR)

SETID(PNTR, INT)
SETLNXL(PNTR, POINT)
SETMARK(FNTR, INT)
SETLNKR(PNTR, POINT)

SETRND(DX)

STRLMTH(STRING)

SUBTOP(LST, DATM [.
SUBBOT

TOP(LST, DATM)

set the ID, INKL, and LNKR
of the argument (or the cell
addressed by the argument)

set the ID (LNKL, MARK, or LNKR)
portion of the addressed cell

set random number generator value

what is a string's length?

DATID][, OLDDAT])
substitute the top (bottom) data
cell on a list

42

59

42

19

what is the top datum of a list? 20

51



-50-

References

Johnson, E. S. SLIP--A symmetric list processor. Research Memorandum

No. 31. Chapel Hill, N.C.: L. L. Thurstone Psychometric Laboratory.

University of North Carolina, 1968.

Johnson, E. S., Rosin, R. F., & Leaf, W. A. SLIP--A symmetric list

processor. Memorandum No. 62. New Haven, Conn.: Yale University

Computer Center, 1967.

Tausworthe, R. C. Random numbers generated by linear recurrence modulo

two. Mathematics of Computation, 1965, 201-209.

Weizenbaum, J. Symmetric list processor. Communications of the

Association for Computing Machinery, 1963, 6, 524-536.

Whittlesey, J. R. B. A comparison of the correlational behavior of the

random number generators for the IBM 360. Communications of the

Association for Computing Machinery, 1968, 11, 641

52

-644.



-51-

Appendix A

Running a SLIP Program

Because SLIP is a set of library subroutines which are not stored on

the standard system library, a few changes in job control (JCL) cards mu :t

be made.

1. In the link editor stage, the library must be revised from the

usual SYS1.PLILIB to the following:

/ /LKED.SYSL.LB DD DSNAME-SYS1.PL1LIB,DISP=SHR
DD DSNAME.00S.SLIPLIB,DISP=SHR

If either LDUMP or DSADUMP is being used, the FORTRAN library must be con-

catenated by a third card:

/1 DD DSNAME=SYS1.FORTLIB,DISP=SHR

2. In the execution stage, one extra output file should be declared,

not only for SLIP but for any PL-I program in which an abnormal job termina-

tion might occur:

//GO.PL1DUMP DD SYSOUT=A

And, if LDUMP or DSADUMP is being used,

i/GO.FTV6F941 DD SYSOUT=A

One of the most time-consuming chores in writing SLIP programs is

de'ining, via a DECLARE statement, all SLIP functions one plans to use.

In order to avoid as much of this effort as possible, an external library has

been established with three different sets of function declarations: LISTS,

READERS, and DLISTS. The first, and most frequently used; defines the basic

list functions. This segment also contains a "CALL INITAS;" statement, so

that one need not write a separate call while using the first declaration.



-52-

The second declaration defines all reader-connected functions, and the

third defines the description list functions. The contents of these

segments, along with standard definitions for the SLIP functions not

covered by the library, are listed below.

To incorporate any or all of these defini.uion segments into the user's

program, one calls upon one of PL-I's preprocessor statements--the

%INCLUDE statement.

At ETS, these segments exist on ETSLIB, in the partitioned data set

OCS.SLIPTXT. One must follow these stets in order to have access to them.

1. Include the following data definition card in the PL-I step:

//PL1L.SYSLIB DD DSNAME=OCS.SLIPTXT,DISP=SHR

2. In the option list for the PL-I job step, include the parameter

which will cause the preprocessor to be invoked (MACRO) along with whatever

other parameters are desired (e.g., LOAD,ATR,XREF). One may wish SOURCE2,

which will print the program as it appears after the preprocessor pass,

and also MACDCK, which will cause the same thing to be punched on cards.

3. In the program, preferably before any executable statements,

request the inclusion of the segments:

%INCLUDE LISTS, READERS, DLISTS;

using all three segments or any two or one.

Note. If one wishes to redefine one of the functions included in one

of the library DECLARE segments (as, for example, to use TOP or BOT in

assignment statements--see pp. 18-19), it is not necessary to avoid using

the segment. Simply define the function as is appropriate to the program

in a DECLARE statement which precedes the %INCLUDE statement: PL-I will

54



-55-

accept the first definition and ignore the one which conies later, although

the compiler will print a warning against multiple function definitions.

There is some cost to the user when he uses these preprocessor segments.

First, the preprocessor stage takes some computer time. Second, and more

important, all of the functions defined are loaded from SLIPLI3 into the

computer -- whether the program will use them or not. In cases with programs

to be run once or twice, these costs may be tolerable. For longer runs,

this procedure seems to be the best compromise:

1. In the first run, use the MACDCK option along with MACRO; this

will cause to be punched a deck of the source program after the preproc-

essor run- -i.e., imluding the requested SLIPTXT segments.

2. For f,ture runs, omit the MACRO and MACDCK options and run without

the preprocessor stage (unless the program requires it for other reasons).

3. Remove from the SLIPTXT cards the definition cards for the func-

tions either not used in the program or redefined in earlier declarations.



-54-

The LISTS Text Segment

FNT:Y
"T',7-iY (P71?) PF.TIiRNS (DIT(1)),
1.:NTRY (,, FIXED R:N (31)) F:,2UPNS (LIT(1)),

F!:TPY (PTP) P.:.TriPrS (DTP),
2W-YL:3: FNTRY (PTR, Pin) (PTR),

'A F (PT?,),
711'7.Y (PTR) PE.U.117N3 (PTE.),

:NTPY (PTP) RETURNS (FIXED r.II (?1) ),

;ATF:Y (PTR) PETO::NS (FIXi,D BIN (31)),
LNTRY (FIXFD DIN (31)),
'ENTRY (PTR) 2:TURNS (PTR) ,

c;ENFFT:
(II5I1 ENTRY (PTR) R17,TUENS (PTR),
II3T2 ;.:NTRY (FIXTD BIN (71)) _..TURNS (PTF),
.L.1313 1 NI'PY ( FIXED DEC (1)) RETURNS (PTR)),

(PTP) FE.7URNS (PTS),
LT:KE CNILY (PTR) RETURNS (PTR),

ENTRY (PIP) RETITRNS (BIT(1)),
L.=:'!..!. ENTRY (PTR) RETURNS (BII(1)),

ENTEY (PTR, PTR) FETURNS (BIT(1)),
rAEK aNTRY (PTR) RETURNS (FILED_BIN (31)),
NEWPOT GENERIC

(NE4E0T1
:EWBOT2

ENTRY
FNTRY

(P2R,
(PTP,

FIXED BIN (15)) RETUIAS
FIXED BIN (31)) iiETUFNS

(PTR),
(PT?),

IL6130T3
.'.:.iF!0T4

::EWLOIS
.:',"i7.(JT6

ENTRY
'ENTRY
ENTRY
ENTRY

(PTE,
(PT?,
(PTR,
(PT?,

FLOAT BIN (21)) RETURNS
FLOAT BIN (53)) PETUFNS
FIXED DEC ( 5)) REIMS
FIXED DEC (15)) RETURNS

(PI.),
(PT),
(PTH),
(PTF) ,

NEwPOT7 ENTRY
F.NTPY

(PTR,
(PTR,

FLOAT' DEC ( 6)) RETURNS
?LOAT DEC (16)) RETURNS

(PTP),
(PTR) ,

l':,FWEIOT9

l':7_WDIIA

ENTRY
ENTRY

(PEP,
(PTR,

CHAR (25E)) RETURNS (PIP),
CHAR (25i3) VAR) PFTUPNS (PTR),

::.E"siEtT17.

NO5T1k.A
7'17..r2111

C,FWTOP1

ENTRY
ENTRY
ENTRY

ENTFY

(PTR,
(PIP,
(P:R,

(PT?,

3IT (2)4e)) RETURNS (rm,
BIT (2:74e) VAR) PETUFNS (PT?),
'PTR) RETURNS (PTR)) ,

FIXED (15)) RETURNS (PTR),
NEwTOP2 7NTRY (PTP, FIXED BIN (31)) RETURNS (PIP:),

!E4TOP3
N3se470P4

:',EWTOP

ENTRY
ENTRY
ENTRY

(PTR,
(PER,
(PIR,

FLCAT BIN .(21))...itETU.E.N.S.J.PTF).
FLCAT BIN (53)) EETURNS (PT?),
FIXED DEC (5) ) RETURNS (PTR),

NEWTOP6 ENTRY (PIP, FIXED DEC (15)) RETURNS (PTR),
NEwTor7 ENTRY (PTR, FLOAT DEC ( 6)) RETURNS (PTF),
NEWTOPP ENTRY (137R, FLOAT DEC (16)) RETURNS (PTR) ,

rE4TOP9 ENTRY .(PTR,. 'CLIARA2561)_._IB2211MS__ (III)
',FWTP9A ENTRY (PEP, CHAR (25E) VAR.) RETURNS (PTR),
NEWTP1C ENTRY (PIT, FIT (2048)) RETURNS (FT?),
NUTP1^.A ENTRY (PTR, BIT (2)48) VAR) PETUNS (PTP),
ETWIP11 7NTRY (PIR, FTF) RETURNS (PTR)) ,

?(.-PEOT ENTRY (PTP,),
P(.:PEOP ENTRY (PTR,),-
FrNT .7FTEY (PTP) =1EIT17NS (FIXED BTN (31)),
?_?A7:V: ENTRY (PIP,),

56



-55-

R:PLAC LNTRY (PTPFIXED BIN (31),),
EN7-?Y (PIT, FIXED BIN (31)),SUEFOT EFTRY (PTR,,

11:0p 7NTFY (PTP FIX!.0 BIN (31)0,
ENTRY (PTP,);

'CALL INITAS:

The READERS Text Segment

GiTA:TPIC

(LDVSTR1 ENTRY (PTR, FIXED (31),BIT(1)) RTTIPES (PTP),
ADVSTR2 ENTRY (PTR, RIT (1)) El:TURNS .(.aTa),
11/S TR1 ENTRY (PTP, FIXED BIN (31)) PETUFNS (PTP),
!PVSTF4 :NTRY (PTR) SETORNS (KR)),

ViL GTNFPIC
(ADvS71,1 (PTR, FIXED BIN (31), 3IT(1)) RETURNS (P71),
ADVSTL2 ENTRY (PT, PIT (1)) RETURNS (PTR),
Ar:VS11,3 JTRY (PTR, FIXED BIN_J31)-), ZETURNS (PTR),
ik.DVSTLu NrRY (PTR) RETURNS (PTR)),

Al.NLNc GEflf,RIC
(P.DVLNP1 (PTR, FIXED BIN(31), BIT(1)) RETURNS (PTR),
ADVLNR2 ENTRY (P2P, a=11.1.) RETURNS (PTR),
hINLNF3 :NTH (PTP, FIXED BIN (31)) RTL'TUPNS (PTR),
11.73V11.;R4 2NTRY (PIR) EETURNS (.PTR)),

VLNL
(ADVLNL1 ENTRY (PI?, FIXED BIN (31), BIT (1)) RETURNS (PTR),
:DVLNL2 ,ATRY (PER, BIT (1)) RETURNS (PTP),
i,DVLNL3 ENTRY (PTR, FIXED BIN (31)). RETURNS (PTR1,..
AmiLrL4 L:NTRY (PTR) RETURNS (PTO),

2LLLPTI (PTE) RETURNSARTRI, _iryr T:\-P7Y (PTR) RETURNS (PTR),
FNTRY (PTR) RETURNS.(FIXED BIN (31)),
ENT:!.Y (PTR) RETURNS (PTR),
ENTPY (PER) RETURNS (PT?),

LIILCNT ENTRY (PTR) RETURNS (FIXED 137.N (31)),
LVLrIP: F.:NTRY (PTR) RETURNS APTR),
LI/L5V'1 7NT3Y (PTP) RETURNS (PT?),

ENT2Y (PTR) RETURNS (BIT(1)),
(PTR) R:TURNS (PTR),

R--7.1) TN:FY (PTR,);



-56-

The DLISTS Text Segment

r::
TrISVM, DNIFY (PTR F7X2 3TN

K6LST F.NTRY (PTR, P=r) rE:U7N:1 (PTF),
NAM.JLST ENTRY (PTT :) I.J.:TuzNs

VYWV?1.L (PTF 9IN FIXE:, BIN (',1),),
NODLST ENTRY (PTR) RETURNS (FM).

F.NTRY (PTF FIXED DIN (31)0;

The following declarations are not included on any SLIPTXT segment

because they represent functions which are used rarely--too infrequently

to justify keeping them present, occupying computer space, for every

program run. The declarations below are the ones which ought to be

used if one does wish to call on the functions:

77CLFE DR AND ENTRY (FLOAT BIN (53)) RETURNS (FLOAT BIN (53));
r:E.CLAFE DtiANDM RETURNS (FLOAT BIN (53));
:::TCLAPE DSADUMP ENTRY;
1).7:;LARE INSERTR. ENTRY IPTR, 107.-R);----
D7CLE INSFRTL ENTRY (PTP, PIP) ;
D.!;CLATIE IRAND ENTI-A (FIXED BIN (31)) RETURNS (FIX :D PIN (31));
DECLE LDUMP ENTRY (, FIXED FIN (31), FIXED PIN (31));
DFCLP,RF MAKCDLL (, FIXED BIN (31)) RETURNS (PTR) ;
:CIrFF MOVER ENTRY (PTR, PTR);

n7vELEaTay.4na,
MFKLSTS (PTP, FIXED BIN (31));

2:CL:aE Ni:;WCELL GENERIC
trEwcEL1 ENT2Y (FIXED BIN (15)) RETURNS (DTR),
NEWCEL2.ENTRY. (FIXED BIN..(31)) RZZURNS (PTR),
NFwcFL3 ENTRY (FLOAT BIN (21)) RETURNS (PTP),
NEWCZLA ZS Z21 1..E.L0.11T_ RIN (51)i_ILF.T.ILBILS (PIR),

NEWCEL5 RNTPY (FIXED DEC ( 5)) RETURNS (PTE),
NEWCEL.6...ENTR3L AFIXED_ZEC.A1511...sZzmRKs
NEWCEL7 ENTRY (FLOAT DEC ( 6)) RETURNS (PTP),
NEWCEL8 ENTRY (FLOAT LLC (1_64)__RZTURNS (PTR), _
NEWCELC ENTRY (CHAP (256)) RETURNS (PTR),
1.7A[CL9A ENTRY. .GEBAE__(25.61 V11) RZTURYS..(PTRY
NEWCL1f: ENTRY (BIT (2048)) RETURNS (PTP),
NUCL1CA ENTRY (BIT (2048) VAE) RETURNS (rTa),
NEWCL11 ENTRY (PTP) RETURNS (PTF));

58



-57-

NUMBEL ENTRY (PTR) RETURNS (FIXED BIN (31));
PRNTLST GENERIC

(l'ENTLS1 ENTRY (PIE),
ERNTLS2 T.NTRY (PTR, CHARM),
PRNILF.3 3NTIAY (PTR, CHAR(1), CHA2(1)),

1NT1 Y (PTR, FILE),
IRNTLS5 ENTLY (PLR, CHAR (1), FILE),
P7N'2I.St INTPY (Ti,P CHhE (1), CHAP (1), FILE));

PUTDATP! ENTFY (PTR);
PITLI'6T F.?1TRY (TR);
RAND :NTNY (F10/I BIN (21)) P.ETURNS (FLOAT BIN (21));
PP.NDTL 'MIRY (PTR) 11E7:URNS (PTR) ;
2CELL.ENT:Y (PTE.);

G7'NERIC
(1.:A1'iLF' (PTP.),

T::!-A.S2 'INTTY (71T, CHAE (1)),
ZNThY (PIP, CHAR (1), CHAP (1)),
TNTFY FILE),
:NTEY (P:R, CHAR(1), FILE),

::AnS6 4:NTFY ::HAR (1), CHAR (1), FILE));
SAVRND RETURNS (FLOAT DIN (53)); .

ST,ARCH ENTRY (PTR,, FIXED DIN (31), PTE) (UIT (1));
TN:FY (, IXED DIN (31), PTR, PTR);
LN:RY (P7R, FIXED BIN (31), PTR, PTR);

ST.TD ENTRY (PTE, FIXED EIN (31)_Y;
STLNKL ENTRY (PTR, PIE);

__SETLNKIX ENTRY. CDT.B.,
Sr.:TRND ENTRY ;

S:ELNTH RITUFNS (FIXED BIN (31));



-58-

Appendix B

SLIP Error Facilities

Although SLIP is a subroutine language operating within PL-I, the

PL-I diagnostics are generally unhelpful for locating an error in list

processing. There are two reasons for this: first, SLIP performs opera-

tions which are outside the realm of normal PL-I capabilities; and second,

SLIP subroutines take some liberties and violate some assumptions of PL-I

programming in being able to accomplish their ends.

The major violation of PL-I standards is in allowing argument lists

of variable length for the subroutine calls. While taboo in PL-I, vari-

able length argument lists are common to most other languages and have been

artificially preserved in SLIP. This allows the user much more flexibility

than fixed-length argument lists but makes most of PL-I's error messages

on argument lists inapplicable.

An advantage to PL-I is that its error messages have several levels of

severity. The philosophy seems to be to inform the user if he has made

a mistake but then allow his program to run as far as possible aryway.

This works ideally with SLIP, in which these "mistakes" are made quite

frequently and purposefully.

SLIP contains some brief error deter i facilities of its own. SLIP

attempts to keep the user's program running as long as possible and to

allow the user as much freedom as possible. There is only one condition

for which SLIP will terminate a program: lack of space, which makes it

impossible to create new cells. In all other cases, SLIP subroutines check

60



-59-

to make sure that its list manipulations are actually being done to lists;

if riot, a warning is printed and execution continues without the asked-for

manipulation. These checks are intended to provide the user with some

indication that his program may be misperforming and to prevent it from

doing something so wrong that the PL-I monitor will detect an error and

halt execution.

If the user's program is going very wrong, then repeatedly calls to

SLIP functions will have invalid arguments and a great amount of computer

time might be wasted. To counteract this, SLIP counts the calls to its

error routines. If the calls exceed a certain number (by default 50; it

may be set to any desired value, though, by including the value as an

argument to INITAS; see p. 15 above), execution is stopped, the following

error message is printed, and the standard PL-I error condition is raised:

*** SLIP ERROR TALLY HAS REACHED nnnn. PROGRAM EXECUTION HAS BEEN

TERMINATED AT THIS POINT.

INITAS has two error messages to indicate that no more space could be

found for list storage and the program is therefore halted; these were

listed on p. 9.

Several functions require one or more list names as arguments. Because

they must perform manipulations based on the list names, they test this and

in general do nothing if they have been given nonnames. The following

error message is printed in such cases:

**** fname WAS CALTED WITHOUT A LIST NAME (OR NAMES) IN ITS ARGUMENT LIST.
**** THE FUNCTION EXITED WITHOUT DOING ANYTHING.

The name of the function is inserted in the first line. The functions

which do this include COPYLST, EMTYLST, ERASLST, ITSVAL, LSTSEQL, MAKDLST,

61



-6o-

MOVER, MOVEL, MRKLSTS, NAMDLST, NEWVAL, NODLST, NOVAL, NUMBEL, PR[TUIST,

PUTLIST, PANDEL, and RDROF.

Other functions have slightly different argument requirements, or

detect other types of errors. Their main comment lines, which appear

with a reminder that the function did nothing, are listed below:

ADVSTR
ADVSTL
ADVLNR REQUIRES THE NAME OF THE READER OF A VALID LIST IN ITS ARGUMENT
ADVLNL LIST.

COPYRDR
ERASRDR

BOT
WAS ASKED TO RETURN THE DATUM OF SOMETHING WHICH WAS NOT A SLIP

DATUM
DATA CELL.

T

ITSVAL
WAS GIVEN THE NAME OF A LIST WITH NO DESCRIPTION LIST.

NOVAL

NEWBOT
REQUIRES A LIST NAME OR LIST CELL ADDRESS AS ITS FIRST ARGUMENT.

NEWTOP
NEWTOP

IF THE DATUM TO BE ADDED TO THE LIST IS A POINTER VARIABTF, NEWBOT REQUIRES

IT TO BE A SUBLIST NAME. NEWCELL

POPBOT
POPTOP WAS ASKED TO ERASE SOMETHING WHICH WAS NOT A SLIP DATA CELL.
REMOVE

PUTDATM REQUIRES THE ADDRESS OF A SLIP CELL AS ITS ARGUMENT.

READLST COULD NOT FIND THE START OF A LIST WITHIN 240 CHARACTERS.
READLST FOUND SOME CHARACTERS WHICH COULD NOT BEGIN A LIST.

SEARCH REQUIRES THAT ITS FIRST ARGUMENT NAME A LIST OR A READER.

SUBBOT WAS ASKED TO SUBSTITUTE A NEW DATUM IN PLACE OF SOMETHING WHICH
SUBTOP

WAS NOT A SLIP DATA CELL.
REPLACE



-61-

Appendix C

Subtle Features of PL-I(F)

For the average user of PL-I and SLIP, it is adequate to know the

information presented to this point. For the user who may wish to attempt

things slightly outside the normal applications of SLIP, and for the user

who reads and is concerned with the PL-I compilation error messages which

commonly accompany SLIP, the following section is intended.

Function and Subroutine Conventions

PL-I almost follows standard OS conventions in the way it sets up and

manipulates function calls and argument lists. By convention, the argument

list of a function is represented by a string of word-long addresses which,

in order, point to the actual first, second, etc. arguments to the func-

tion. This address string is in turn addressed by the value in General

Register 1 (out of 16, numbered 0 through 15). Because OS allows variable-

length lasts of arguments, there is normally a flag set in the last address

in the list to indicate that it is the address of the last argument; this

flag is pimply a minus sign--i.e., the first bit in the last address is 1.

PL-I sets up its argument list in the same way. Although PL-I does

not "allow" variable-length argument -.).ists, and thus has no need for

flagging the last argument address, does flag the address in order

to be consistent with OS conventions.

There are two differences, however. If a FORTRAN function, for example,

is to return a value, the function lea7es the value in a conventional spot

and the calling program retrieves it. Since PL-I may return anything

which is a valid data type, PL-I can't reserve a conventional spot



-62-

sufficiently flexible to accept any return value. Therefore, PL-I arti-

ficially takes the recipient of the function's value and makes it the final

argument to the call. This is why, for example, the normal call for TOP

(e.g., CALL TOP(LST, DATM);) can be redefined so that DATM = TOP(LST); is

acceptable. Both statements generate a call to TOP which appears to have

two arguments.

The second difference appears to be a compiler error, but one requir-

ing enough coincidences that it is unlikely to bother the user. Because

of SLIP's non-PL-1 treatment of arguments, however, program errors due to

this are extremely hard to detect and the problem deserves description.

Under certain circumstances, PL-I will flag an address which is not

the final argument address; this makes it appear that the argument list is

shorter than it actually is. This may happen if the function call comes

from within a subroutine and the final parameter to the subroutine is a

nonfinal argument in the function call. For example:

DUMMY: PROG (VAR, VARY);

CALL VERYDUM(VARY, X, Y, Z);

END DUMMY;

In coding the call to VERYDUM, PL-I uses the address of VARY as taken from

the argument list to DUMMY. Since VARY was the last argument to DUMMY, its

address was flagged; PL-I does not remove the flag before putting the

address into VERYDUM's argument list.

If VERYDUM is a function whose operation depends on the number of

arguments it thinks it receives, it will operate not as intended since it

will find it has only one argument.

64



-65-

Many SLIP functions count their arguments and respond differently for

different numbers of arguments. They have been programmed around this

compiler quirk for their own calls to other SLIP functions, bat the user

can run into this problem if he writes subroutines which call SLIP func-

tions.

SLIP uses variable length argument lists in two ways: first, by

allowing certain arguments to be dropped from the list if they are unwanted

(e.g., CALL PRNTLST(LST, 'BREAK..', OWNFILE); vs. CALL PRNTLST(LST);); and

second, by letting functions return values or not (e.g., CALL ERASLST

(LST); vs. ICOUNT = ERASLST(LST);). PL-I does not allow such things, and

it objects during compilation with different degrees of severity:

1. CALL ERASLST(LST); and ICOUNT = ERASLST(LST); PL-I codes both

correctly and issues no warning; PL-I seems completely blind to this kind

of violation. PL-I will object, however, if the function is to return a

data type not compatible with the recipient: RANDEL normally returns a

pointer value; the incompatible INT = RANDEL(LST); would be rejected,

although it would be fine if RANDEL was defined as returning a fixed

binary number.

2. DCL COPYLST ENTRY(PTR, PTR) RETURNS (PTR); and COPY = COPYLST

(ORGL); The call will be coded as written, which is acceptable to COPYLST,

and the following severe error message will appear:

IEM0787I INCORRECT NUMBER OF ARGUMENTS FOR FUNCTION zzzz IN STATEMENT
NUMBER xxx

5. COPY = COPYLST(ORGL, COP); and COPY = COPYLST(ORGL); Both

statements will be coded as written but this warning will be printed:



IEM07911 NUMBER OF ARG IDI

-64-

S FOR zzzz STATEMENT NUMBER xxx INCONSISTENT
WITH NUMBER USED ELSEWHERE

5. Incorrect matching of argument attributes with parameter attribute

definitions. For normal functions, this combination will result in a data

conversion if possible or, if not, statement deletion: DCL SETID ENTRY

(PTR, FIXED BIN (31)); and CALL SETID(LST, X); If X is a float decimal,

for example, conversion wil. take place. For generic functions, an

attribute mismatch will terminate compilation.

6. Generic functions. From Appendix A, it is apparent that SLIP

?.ses generic functions extensively. Generic functions allow the user to

specify only the generic name in his program and have the compiler auto-

matically select the proper entry. Such functions allow greater flexibility

and power in the writing of the subroutines. In functions like NEWTOP

(pp. 19 and 54), for example, the entry point tells NEWTOP the type of

datum to be put in a SLIP cell.

Generic functions are also extremely unforgiving. One must specify

completely all the arguments' attributes and the return attributes, if

any (although even generic functions don't care if the executed statement

requires a returned value or not). And if attributes in the declaration

don't match the attribute in the calling statement, compilation is termi-

nated rather than data conversion attempted.

For numeric data, precisions must match perfectly: if NEWTOP1 requires

a second argument with FIXED BIN (15) attributes, an argument with FIXED

BIN (14) attributes will cause termination, even though both types of

variables have the same physical representation.



l'-or string data, the length (A. the s' -ring is not considered 111

matching. Although NEWTOP9 is declared with 1 second argument whoe ati-vi-

b,Ites are CHAR (256), a fixed length cht.racter string of arty lerwfth wit

satisCy the requirements. No string of varying length will, however;

thus the parallel entry NEW1'P9A.

Based Variables and Dope Vectors

Based variables consist of a (potentially existing) variable .3.ad a

pointer which addresses the location of the variable. Based variabls

exist only when the po.,nter has been given a valid address, either tho101

an ALLOCATE statement or by an assignment statement or subroutine call

which gives the pointer some value. For SLIP, based variables tend to be

quite useful as a means of gaining access to list information. For example.

if the declaration DCL DADDR PTR BASED (DPOINT); exists and CALL LIST

(DPOINT); is executed, DADDR is the LNKL address of the header of the list

(plus the ID, which does not interfere with the address potential of DADD)

Based variables which are scalars without Dope Vectors are uncompli-

cated; if the base pointer variable contains an address, then the variable

is seen as being at that location.

Based variables which have Dope Vectors, such as strings and arrays,

are more complicated. This is primarily because the base pointer, which

addresses the variable, and the Dope Vector pointer, which addresses the

variable, usually do not hold the same value.

For arrays, the Dope Vector consists of the virtual address of the

array element whose subscripts are all 0 and multipliers for determining

the location of any element given its subscripts. This virtual address is

6"/



-66-

usually outside the physical limits of the array. For a based array, the

base pointer contains the address of the first actual storage location for

the array, regardless of its subscripts. Whenever the array is referenced

a dummy Dope Vector is created with its address derived from the pointer's

value to reference the 0-subscript element.

BRsed string variables may not have the VARYING attribute because of

the way PL-I deals with based string Dope Vectors. There is a single

dummy Dope Vector, even though the string may have been ALLOCATEd into

any number of locations. In normal string manjpu"..ations, PL-I needs the

address of the Dope Vector, which indicates where and how long the string

is. In based string manipulations, the base pointer contains the address

of the start of the string itself, rather than the address of the Dope

Vector. For each manipulation, PL-I creates a Dope Vector from the base

pointer and the dummy Dope Vector, which contains only length information,

Because of this, it is somewhat difficult to retrieve a string datum

from a list cell by means of based variables. If VSTR is a variable-length

string, CELLAR is the address of a string-holding cell, PNTR is a pointer

variable, and DADDR is a pointer and DSTR is a based string both with

DPOINT as their base pointer, the following code would succeed:

PNTR = CONTS(CELLAD);
DPOINT = CONTS(PNTR);
VSTR = SUBSTR(DSTR, STRLNTH(PNTR- > DADDR));

On the other hand, this SLIP code would succeed also:

CALL DATUM(CELLAD, VSTR);

6F4

A



Appendix D

A SNOBOL-Like Function in PL-I

- SNOSCAN(variable number of character string arguments)

SNOSCAN does not strictly belong in a discussion of SLIP functions.

but .Ls incThded here because it was developed in conjunction with the SLIP

effort rnd because it represents another facet of the attempt to make PL-I

an even more general language.

.;110SCAN is intended to perform the .najor string manipulating functions

Df FNOBOL. and its syntax and abilities are adapted directly from SNOBOL

to PL-I. Arguments to SNOSCAN are all character strings, and should

generally be of varying length; they fall into four general categories:

I. The first argument is the string to be scanned (STR).

2. The second arguments are pattern strings or variable stings to

be matched in STR. These arguments are optional and may be omitted.

5. The third argument is the string (of length 3) '"="'. It is

optional also; if it is omitted, arguments of the fourth type are also

omitted.

4. The fourth arguments are strings to be substituted in STR for

the substring of STR successfully matched by the Type 2 arguments.

Briefly, SNOSCAN allows a string STR to be scanned for particular

patterns; the part of STR which is matched may be left alone, may be

deleted, or may be replaced by another set of patterns. SNOSCAN returns

'1'B if all parts of the scan are successful; it returns 'O'B if any part

fails, although depending on the part that failed some or all of the

string arguments may be successfully modified.



-68-

I. Pattern matching. The first part of SNOSCAN tries to find a

substring of STR which matches the concatenation of the Type 2 arguments.

(If there are no Type 2 arguments, the match is deemed successful with the

matched substring all of STR.) Type 2 arguments may be either patterns

or variables:

A. Patterns are nonnull strings of characters to be matched in

STR, Patterns 'nay have optionally an explicit Position, which says that

the match can be successful only at a given distance from the start of

STR. (This corresponds to ANCHOR mode in SNOBOL.) The Position, if

explicit, is indicated by "xxx" at the start of the pvttern; xxx is an

unsigned string of decimal characters; there may be any number of characters

in xxx. "1" corresponds to the first character in STR. (The match

attempted begins with the first character after the Position indicator.

If the user wishes to match a pattern which begins with the double quote

", he should repeat it: "". The first one is ignored in the scan.)

Sample patterns:

'ABCDEF'

' DYNAMITE '

'"53" DYNAMITE '

'""23 SKIDDOO"'
'""RATS," CRIED CHARLIE BROWN.'

The second and third patterns are identical except that the third requires

a match starting at the 53rd character of STR. Note in the fourth and fifth

patterns that only an initial double quote must be doubled; later ones are

interpreted properly.

B. Variables are null strings which will be given nonnull

length and values if the scan is successful. Variables are useful for three



-69-

main purposes: assigning a value to a variable, skipping an unimportant

portion of STR between two substrings which must be matched exactly, and

looking for repeating patterns in STR via the backreferencing,featurc or

SNOSCAN.

Variables may have optionally a Position, as for patterns, and a

Length; thus a variable may not really be a null string: the important

point is that it is null after any Position or Length specifications.

Position is indicated as it was for patterns; Length is shown in the same

way. Position always precedes Length; if one wants to indicate only

Length, the Position number may be replaced by a single nonnumeric

character (not ").

Sample variables:

Itf57f
1115711111311'

WWI
"X"'10372"

The second example specifies a position in STR at which it must begin; the

third example also specifies that thevariable must be exactly 13 characters

long. The fourth example specifies Length but not Position, as does the

fifth. The fifth also points out the fact that strings may be up to the

maximum allowed by PI-I.

SeversTgimple examples will illustrate the kinds of pattern matching

SNOSCAN can do:

FLAG = SNOSCAN(STR, A); (A is a pattern.) The string STR is searched

for a substring (which may be all of STR) equal to A. If A has an explicit

Position indicator, the match will be attempted only at the proper offset



-70-

in STR; otherwise the match will be tried at all positions, starting at

the left end of. STR.

FLAG = SNOSCAN(STR, A, B); (A, B are patterns) A match for A is

looked for as described above. If successful, the next substring of STR

is compared to B.

FLAG = SNOSCAN(STR, X); (X is a variable.) X is set equal to STR.

If X has Position or Length restrictions, it is set equal to the specified

substring.

FLAG = SNOSCAN(STR, X, X); (X is a variable.) SNOSCAN tries to find

a repeating substring in STR, starting with the beginning of STR (unless

X has an explicit Position, in which case X could only end up null),

subject to any Length indicator in X. If successful, X is set equal to

that substring; if net X is made null and SNOSCAN still succeeds.

FLAG = SNOSCAN(STR, X, A); (A is a pattern; X is a variable.) STR

is searched for A; if successful, X is made equal to the portion of STR

from the beginning up to the beginning of A. (SNOSCAN fails if there is

any contradiction of explicit Length or Position with what is actually

found.)

FLAG = SNOSCAN(STR, A, X); (A is a pattern; X is a variable.) As

in the previous example, except X is made equal to the substring of STR

after the end of A.

FLAG = SNOSCAN(STR, A, X, B); (A, B are patterns; X is a variable.)

STR is searched for A and the portion of STR after A is searched for B; if

successful, X is made equal to the substring of STR between A and B.

FLAG = SNOSCAN(STR, A, X, B, X); (A, B are patterns; X is a variable.)

STR is searched for A, the portion of STR after A is searched for B, and



-71-

the portion of STR after B is searched (in ANCHOR mode) Cor the substfing

of STP between A and B. II all is successful, X is set to the value 5f

that intermediate substring. This demonstrates the backreferencing

feature. There may be any number of references to the same variable in a

single call, and there may be any number of variables which are back-

referenced in a single call.

II. Substitution. In all the examples considered up to now, SNOSCAN

has only been asked to see if STR contains a particular pattern--although

the specification of that pattern can become quite complex. By using the

Type 5 argument "=", with or without Type 2 or Type 4 arguments, it is

possible to change the value of STR.

Type 2 arguments serve to mark out the portion of STR to be modified.

If no Type 2 arguments are present, all of STR is to be changed.

Type 4 arguments give the value of the character segment which will

be inserted in place of the part of STR to be changed. If no Type 4

arguments are present, the part of STR to be changed is simply deleted.

It is possible to reuse some of the Type 2 arguments as Type 1

arguments in the same call. Variables which had to be matched are given

their final value at the end of the scanning portion of SNOSCAN, so that

they may be used to replace part of STR.

E.g., FLAG = SNOSCAN(STR, A, B, "=", B, A); (A, B are patterns.)

This, if successful, simply interchanges two portions of STR.

FLAG = SNOSCAN(STR, X,"=", X); (X is a variable.) This sets X

equal to STR (assuming no explicit Position of Length indicators) and

replaces STR by itself.



-72-

SNOSCAN is intended to modify strings; therefore a few words of

caution are in order.

1. One is best off using variable length strings if they are going

to be changed by SNOSCAN. PL-I does not assume it knows the length of

such strings, as it does with fixed length ones, and looks up the length

each time. Also, SNOSCAN resets the length of strings it modifies; this

could be hazardous if the string is really fixed length--SNOSCAN has no way

of telling them apart at execution time.

2. Make sure the strings are of adequate length. With one exception,

SNOSCAN fails as soon as it tries to substitute a character string that is

too long for the maximum length of its destination string. The exception

is in modifying STR itself. If SNOSCAN has succeeded up to the point of

changing STR (the last thing it does), it will modify STR up to its maximum

length and throw away the rest of the characters it was supposed to put

in STR. Instead of returning '1'13, SNOSCAN will return 'O'B to indicate

that something went less than perfectly.


